CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-12-21
Cited: 0
Clicked: 3087
Citations: Bibtex RefMan EndNote GB/T7714
Zhiqian LIU, Xuyang LOU, Jiajia JIA. Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(11): 1684-1699.
@article{title="Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems",
author="Zhiqian LIU, Xuyang LOU, Jiajia JIA",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="11",
pages="1684-1699",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100552"
}
%0 Journal Article
%T Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems
%A Zhiqian LIU
%A Xuyang LOU
%A Jiajia JIA
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 11
%P 1684-1699
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100552
TY - JOUR
T1 - Event-triggered dynamic output-feedback control for a class of Lipschitz nonlinear systems
A1 - Zhiqian LIU
A1 - Xuyang LOU
A1 - Jiajia JIA
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 11
SP - 1684
EP - 1699
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100552
Abstract: This paper investigates the problem of dynamic output-feedback control for a class of lipschitz nonlinear systems. First, a continuous-time controller is constructed and sufficient conditions for stability of the nonlinear systems are presented. Then, a novel event-triggered mechanism is proposed for the lipschitz nonlinear systems in which new event-triggered conditions are introduced. Consequently, a closed-loop hybrid system is obtained using the event-triggered control strategy. Sufficient conditions for stability of the closed-loop system are established in the framework of hybrid systems. In addition, an upper bound of a minimum inter-event interval is provided to avoid the Zeno phenomenon. Finally, numerical examples of a neural network system and a genetic regulatory network system are provided to verify the theoretical results and to show the superiority of the proposed method.
[1]Abdelrahim M, Postoyan R, Daafouz J, et al., 2016. Stabilization of nonlinear systems using event-triggered output feedback controllers. IEEE Trans Automat Contr, 61(9):2682-2687.
[2]Andrieu V, Praly L, 2009. A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica, 45(8):1789-1798.
[3]Angulo MT, Moog CH, Liu YY, 2019. A theoretical framework for controlling complex microbial communities. Nat Commun, 10(1):1045.
[4]Casey R, de Jong H, Gouzé JL, 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol, 52(1):27-56.
[5]Chen J, Chen BM, Sun J, 2019. Complex system and intelligent control: theories and applications. Front Inform Technol Electron Eng, 20(1):1-3.
[6]Chen PN, Cheng DZ, Jiang ZP, 2006. A constructive approach to local stabilization of nonlinear systems by dynamic output feedback. IEEE Trans Automat Contr, 51(7):1166-1171.
[7]Collins EG, Selekwa MAF, Walker RB, et al., 2006. A stacked model structure for off-line parameter variation estimation in multi-equilibria nonlinear systems. Eur J Contr, 12(4):353-364.
[8]Dong JX, Yang GH, 2008. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. IEEE Trans Syst Man Cybern B Cybern, 38(4):1166-1175.
[9]Donkers MCF, Heemels WPMH, 2012. Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized event-triggering. IEEE Trans Automat Contr, 57(6):1362-1376.
[10]Ekramian M, 2020. Static output feedback problem for Lipschitz nonlinear systems. J Franklin Inst, 357(3):1457-1472.
[11]Goebel R, Sanfelice RG, Teel AR, 2012. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, Princeton, USA.
[12]Gu Z, Huan Z, Yue D, et al., 2018. Event-triggered dynamic output feedback control for networked control systems with probabilistic nonlinearities. Inform Sci, 457-458:99-112.
[13]Hamid SR, Nazir MS, Rehan M, et al., 2019. New results on regional observer-based stabilization for locally Lipschitz nonlinear systems. Chaos Solit Fract, 123:173-184.
[14]Kammogne AST, Kountchou MN, Kengne R, et al., 2020. Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances. Front Inform Technol Electron Eng, 21(9):1369-1386.
[15]Khalil HK, 2014. Nonlinear Control, Global Edition. Pearson Education, USA.
[16]Li FF, Sun JT, 2010. Asymptotic stability of a genetic network under impulsive control. Phys Lett A, 374(31-32):3177-3184.
[17]Liu S, Song Y, Wei GL, et al., 2017. Event-triggered dynamic output feedback RMPC for polytopic systems with redundant channels: input-to-state stability. J Franklin Inst, 354(7):2871-2892.
[18]Liu W, Wang ZM, Dai HH, et al., 2016. Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems. IET Contr Theory Appl, 10(15):1782-1788.
[19]Meslem N, Prieur C, 2015. Event-based controller synthesis by bounding methods. Eur J Contr, 26:12-21.
[20]Molaei B, 2008. Optimization of dynamic output feedback controller for piecewise affine systems: an LMI approach. J Circ Syst Comput, 17(2):263-277.
[21]Nesic D, Teel AR, Carnevale D, 2009. Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans Automat Contr, 54(3):619-624.
[22]Park JH, 2005. On design of dynamic output feedback controller for GCS of large-scale systems with delays in interconnections: LMI optimization approach. Appl Math Comput, 161(2):423-432.
[23]Peng C, Yang TC, 2013. Event-triggered communication and H∞ control co-design for networked control systems. Automatica, 49(5):1326-1332.
[24]Pertew AM, Marquez HJ, Zhao Q, 2006. H∞ observer design for Lipschitz nonlinear systems. IEEE Trans Automat Contr, 51(7):1211-1216.
[25]Pham TP, Sename O, Dugard L, 2019. Unified H∞ observer for a class of nonlinear Lipschitz systems: application to a real ER automotive suspension. IEEE Contr Syst Lett, 3(4):817-822.
[26]Qian CJ, Lin W, 2001. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Automat Contr, 46(7):1061-1079.
[27]Qiu JL, 2007. Exponential stability of impulsive neural networks with time-varying delays and reaction–diffusion terms. Neurocomputing, 70(4-6):1102-1108.
[28]Rehan M, Jameel A, Ahn CK, 2018. Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans Syst Man Cybern Syst, 48(8):1297-1308.
[29]Sanchez EN, Perez JP, 2003. Input-to-state stabilization of dynamic neural networks. IEEE Trans Syst Man Cybern A Syst Hum, 33(4):532-535.
[30]Shu F, Zhai JY, 2020. Event-triggered practical finite-time output feedback stabilisation for switched non-linear time-delay systems. IET Contr Theory Appl, 14(6):824-833.
[31]Tabuada P, 2007. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Automat Contr, 52(9):1680-1685.
[32]Theodosis D, Dimarogonas DV, 2019. Event-triggered control of nonlinear systems with updating threshold. IEEE Contr Syst Lett, 3(3):655-660.
[33]Wang ZD, Qiao H, Burnham KJ, 2002. On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters. IEEE Trans Automat Contr, 47(4):640-646.
[34]Yu H, Antsaklis PJ, 2013. Event-triggered output feedback control for networked control systems using passivity: achieving L2 stability in the presence of communication delays and signal quantization. Automatica, 49(1):30-38.
[35]Zhang JH, Feng G, 2014. Event-driven observer-based output feedback control for linear systems. Automatica, 50(7):1852-1859.
[36]Zhang XM, Han QL, 2016. A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans Cybern, 46(12):2745-2757.
[37]Zhang XM, Han QL, 2017. Event-triggered H∞ control for a class of nonlinear networked control systems using novel integral inequalities. Int J Robust Nonl Contr, 27(4):679-700.
[38]Zhang Z, Li HP, Shi Y, et al., 2020. Cooperative optimal control for Lipschitz nonlinear systems over generally directed topologies. Automatica, 122:109279.
[39]Zhou J, Wen CY, Li TS, 2012. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans Automat Contr, 57(10):2627-2633.
[40]Zuo ZY, Lin ZL, Ding ZT, 2016. Truncated prediction output feedback control of a class of Lipschitz nonlinear systems with input delay. IEEE Trans Circ Syst II Expr Briefs, 63(8):788-792.
Open peer comments: Debate/Discuss/Question/Opinion
<1>