Full Text:   <604>

Summary:  <25>

Suppl. Mater.: 

CLC number: TP393

On-line Access: 2025-07-02

Received: 2024-07-02

Revision Accepted: 2025-07-02

Crosschecked: 2024-12-09

Cited: 0

Clicked: 553

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Congyuan XU

https://orcid.org/0009-0003-7760-5980

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.6 P.862-876

http://doi.org/10.1631/FITEE.2400556


A subspace-based few-shot intrusion detection system for the Internet of Things


Author(s):  Zhihui LI, Congyuan XU, Kun DENG, Chunyuan LIU

Affiliation(s):  School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310027, China; more

Corresponding email(s):   cyxu@zjxu.edu.cn

Key Words:  Intrusion detection system, Few-shot learning, Internet of Things, Subspace


Zhihui LI, Congyuan XU, Kun DENG, Chunyuan LIU. A subspace-based few-shot intrusion detection system for the Internet of Things[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(6): 862-876.

@article{title="A subspace-based few-shot intrusion detection system for the Internet of Things",
author="Zhihui LI, Congyuan XU, Kun DENG, Chunyuan LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="6",
pages="862-876",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400556"
}

%0 Journal Article
%T A subspace-based few-shot intrusion detection system for the Internet of Things
%A Zhihui LI
%A Congyuan XU
%A Kun DENG
%A Chunyuan LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 6
%P 862-876
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400556

TY - JOUR
T1 - A subspace-based few-shot intrusion detection system for the Internet of Things
A1 - Zhihui LI
A1 - Congyuan XU
A1 - Kun DENG
A1 - Chunyuan LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 6
SP - 862
EP - 876
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400556


Abstract: 
Deep learning-based intrusion detection systems rely on numerous training samples to achieve satisfactory detection rates. However, in the real-world internet of Things (IoT) environments, the diversity of IoT devices and the subsequent fragmentation of attack types result in a limited number of training samples, which urgently requires researchers to develop few-shot intrusion detection systems. In this study, we propose a subspace-based approach for few-shot IoT intrusion detection systems to cope with the dilemma of insufficient learnable samples. The method is based on the principle of classifying metrics to identify network traffic. After feature extraction of samples, a subspace is constructed for each category. Next, the distance between the query samples and the subspace is calculated by the metric module, thus detecting malicious samples. Subsequently, based on the CICIoT2023 dataset we construct a few-shot IoT intrusion detection dataset and evaluate the proposed method. For the detection of unknown categories, the detection accuracy is 93.52% in the 5-way 1-shot setting, 92.99% in the 5-way 5-shot setting, and 93.65% in the 5-way 10-shot setting.

基于子空间的小样本物联网入侵检测系统

李智慧1,2,许聪源2,邓琨2,刘春元2
1浙江理工大学信息科学与工程学院,中国杭州市,310027
2嘉兴大学信息科学与工程学院,中国嘉兴市,314000
摘要:基于深度学习的入侵检测系统依赖大量的训练样本才能达到令人满意的检测率。然而,在实际的物联网环境中,物联网设备种类多,攻击类型碎片化,导致训练样本数较小,这迫切需要研究者们开发小样本入侵检测系统。为此,本文提出基于子空间的小样本物联网入侵检测系统方法,来应对可学习样本不足的困境。该方法基于度量分类的思想来识别网络流量,对样本进行特征提取后,为每一个类别构造一个子空间,然后通过度量模块计算查询样本与子空间的距离,从而实现对恶意样本的检测。基于CICIoT2023数据集,构建了小样本物联网入侵检测数据集,并对所提方法进行评估。对于未知类别的检测,在5-way 1-shot(5类,每类仅1个标注样本)设置下检测准确率为93.52%,在5-way 5-shot设置下检测准确率为92.99%,在5-way 10-shot设置下检测准确率为93.65%。

关键词:入侵检测系统;小样本学习;物联网;子空间

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alani MM, Awad AI, 2023. An intelligent two-layer intrusion detection system for the Internet of Things. IEEE Trans Ind Inform, 19(1):683-692.

[2]Chen D, Zhang FB, Zhang XP, 2023. Heterogeneous IoT intrusion detection based on fusion word embedding deep transfer learning. IEEE Trans Ind Inform, 19(8):9183-9193.

[3]Draper-Gil G, Lashkari AH, Mamun MSI, et al., 2016. Characterization of encrypted and VPN traffic using time-related features. Proc 2nd Int Conf on Information Systems Security and Privacy, p.407-414.

[4]Du L, Gu ZQ, Wang Y, et al., 2024. A few-shot class-incremental learning method for network intrusion detection. IEEE Trans Netw Serv Manag, 21(2):2389-2401.

[5]Duan GH, Lv HW, Wang HQ, et al., 2023. Application of a dynamic line graph neural network for intrusion detection with semisupervised learning. IEEE Trans Inform Foren Secur, 18:699-714.

[6]Duan RX, Li D, Tong Q, et al., 2021. A survey of few-shot learning: an effective method for intrusion detection. Secur Commun Netw, 2021(1): 4259629.

[7]Feng TT, Qi Q, Wang JY, et al., 2021. Few-shot class-adaptive anomaly detection with model-agnostic meta-learning. IFIP Networking Conf, p.1-9.

[8]Finn C, Abbeel P, Levine S, 2017. Model-agnostic meta-learning for fast adaptation of deep networks. Proc 34th Int Conf on Machine Learning, p.1126-1135.

[9]Fouladi RF, Ermiş O, Anarim E, 2022. A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder neural network for SDN. Comput Netw, 214: 109140.

[10]He MS, Zhao XW, Wang XJ, 2024a. An efficient DDoS detection method based on packet grouping via online data flow processing. IEEE Trans Sustain Comput, 10(2):202-216.

[11]He MS, Huang YM, Wang XL, et al., 2024b. A lightweight and efficient IoT intrusion detection method based on feature grouping. IEEE Int Things J, 11(2):2935-2949.

[12]Jamal MA, Qi GJ, 2019. Task agnostic meta-learning for few-shot learning. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11711-11719.

[13]Koch G, Zemel R, Salakhutdinov R, 2015. Siamese neural networks for one-shot image recognition. Proc 32nd Int Conf on Machine Learning, p.1-30.

[14]Lu CM, Wang XF, Yang AM, et al., 2023. A few-shot-based model-agnostic meta-learning for intrusion detection in security of Internet of Things. IEEE Int Things J, 10(24):21309-21321.

[15]Lu HM, Wang T, Xu X, et al., 2022. Cognitive memory-guided autoencoder for effective intrusion detection in Internet of Things. IEEE Trans Ind Inform, 18(5):3358-3366.

[16]Makkar A, Garg S, Kumar N, et al., 2021. An efficient spam detection technique for IoT devices using machine learning. IEEE Trans Ind Inform, 17(2):903-912.

[17]Mehedi ST, Anwar A, Rahman Z, et al., 2023. Dependable intrusion detection system for IoT: a deep transfer learning based approach. IEEE Trans Ind Inform, 19(1):1006-1017.

[18]Neto ECP, Dadkhah S, Ferreira R, et al., 2023. CICIoT2023: a real-time dataset and benchmark for large-scale attacks in IoT environment. Sensors, 23(13):5941.

[19]Nichol A, Achiam J, Schulman J, 2018. On first-order meta-learning algorithms. https://arxiv.org/abs/1803.02999

[20]Niu ZQ, Guo WJ, Xue JF, et al., 2023. A novel anomaly detection approach based on ensemble semi-supervised active learning (ADESSA). Comput Secur, 129: 103190.

[21]Ouyang YK, Li BB, Kong QL, et al., 2021. FS-IDS: a novel few-shot learning based intrusion detection system for SCADA networks. IEEE Int Conf on Communications, p.1-6.

[22]Schwartz E, Karlinsky L, Shtok J, et al., 2018. Δ-encoder: an effective sample synthesis method for few-shot object recognition. 32nd Conf on Neural Information Processing Systems, p.2850-2860.

[23]Shi ZX, Xing MY, Zhang J, et al., 2023. Few-shot network intrusion detection based on model-agnostic meta-learning with L2F method. IEEE Wireless Communications and Networking Conf, p.1-6.

[24]Simon C, Koniusz P, Nock R, et al., 2020. Adaptive subspaces for few-shot learning. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4135-4144.

[25]Snell J, Swersky K, Zemel R, 2017. Prototypical networks for few-shot learning. Proc 31st Int Conf on Neural Information Processing Systems, p.4080-4090.

[26]Sun HD, Wan L, Liu MY, et al., 2023. Few-shot network intrusion detection based on prototypical capsule network with attention mechanism. PLoS ONE, 18(4): e0284632.

[27]Sung F, Yang YX, Zhang L, et al., 2018. Learning to compare: relation network for few-shot learning. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1199-1208.

[28]Thakkar A, Lohiya R, 2023. Attack classification of imbalanced intrusion data for IoT network using ensemble-learning-based deep neural network. IEEE Int Things J, 10(13):11888-11895.

[29]Vinyals O, Blundell C, Lillicrap T, et al., 2016. Matching networks for one shot learning. Proc 30th Int Conf on Neural Information Processing Systems, p.3637-3645.

[30]Wang QL, Wu BG, Zhu PF, et al., 2020. ECA-Net: efficient channel attention for deep convolutional neural networks. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11531-11539.

[31]Wang YH, Zhang ZY, Zhao KJ, et al., 2024. A few-shot learning based method for industrial Internet intrusion detection. Int J Inform Secur, 23(5):3241-3252.

[32]Wang YK, Xu CM, Liu C, et al., 2020. Instance credibility inference for few-shot learning. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.12833-12842.

[33]Wang YX, Girshick R, Hebert M, et al., 2018. Low-shot learning from imaginary data. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7278-7286.

[34]Wang ZM, Tian JY, Qin J, et al., 2021. A few-shot learning-based Siamese capsule network for intrusion detection with imbalanced training data. Comput Intell Neurosci, 2021: 7126913.

[35]Xu CY, Shen JZ, Du X, 2020. A method of few-shot network intrusion detection based on meta-learning framework. IEEE Trans Inform Forens Secur, 15:3540-3552.

[36]Xu H, Wang YJ, 2022. A continual few-shot learning method via meta-learning for intrusion detection. IEEE 4th Int Conf on Civil Aviation Safety and Information Technology, p.1188-1194.

[37]Yan Y, Yang Y, Gu YH, et al., 2023. A few-shot intrusion detection model for the Internet of Things. 3rd Int Conf on Electronic Information Engineering and Computer Science, p.531-537.

[38]Yan Y, Yang Y, Shen F, et al., 2024. Meta learning-based few-shot intrusion detection for 5G-enabled industrial Internet. Compl Intell Syst, 10(3):4589-4608.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE