Full Text:   <1542>

Summary:  <20>

CLC number: 

On-line Access: 2026-01-08

Received: 2024-07-18

Revision Accepted: 2024-12-16

Crosschecked: 2026-01-08

Cited: 0

Clicked: 1504

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiangfei ZHENG

https://orcid.org/0000-0001-8384-6703

Hongwei LI

https://orcid.org/0000-0001-6809-7097

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2365-2381

http://doi.org/10.1631/FITEE.2400606


Trajectory poisson multi-Bernoulli filters with unknown detection probability


Author(s):  Xiangfei ZHENG, Kaidi LIU, Hongwei LI

Affiliation(s):  School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

Corresponding email(s):   zxfdouble@cug.edu.cn, lkd1028@cug.edu.cn, hwli@cug.edu.cn

Key Words:  Trajectory poisson multi-Bernoulli, Beta-gaussian, Detection probability, Alive trajectories, All trajectories


Xiangfei ZHENG, Kaidi LIU, Hongwei LI. Trajectory poisson multi-Bernoulli filters with unknown detection probability[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2365-2381.

@article{title="Trajectory poisson multi-Bernoulli filters with unknown detection probability",
author="Xiangfei ZHENG, Kaidi LIU, Hongwei LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2365-2381",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400606"
}

%0 Journal Article
%T Trajectory poisson multi-Bernoulli filters with unknown detection probability
%A Xiangfei ZHENG
%A Kaidi LIU
%A Hongwei LI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2365-2381
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400606

TY - JOUR
T1 - Trajectory poisson multi-Bernoulli filters with unknown detection probability
A1 - Xiangfei ZHENG
A1 - Kaidi LIU
A1 - Hongwei LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2365
EP - 2381
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400606


Abstract: 
Compared with general multi-target tracking (MTT) filters, this paper focuses on multi-target trajectory estimation in scenarios where the detection probability of the sensor is unknown. In this paper, two trajectory poisson multi-Bernoulli (TPMB) filters with unknown detection probability are proposed: one for alive trajectories and the other for all trajectories. First, the augmented trajectory state with detection probability is constructed, and then two new state transition models and a new measurement model are proposed. Then, this paper derives the recursion of TPMB filters with unknown detection probability. Furthermore, the detailed beta-gaussian (BG) implementations of TPMB filters for alive trajectories and all trajectories are presented. Finally, simulation results demonstrate that the proposed TPMB filters with unknown detection probability can achieve robust tracking performance and effectively estimate multi-target trajectories even when the detection probability is unknown.

检测概率未知的轨迹泊松多伯努利滤波器

郑翔飞,刘凯迪,李宏伟
中国地质大学(武汉)数学与物理学院,中国武汉市,430074
摘要:与一般的多目标跟踪滤波器相比,本文聚焦于传感器检测概率未知场景下的多目标轨迹跟踪问题。提出两种适用于检测概率未知的轨迹泊松多伯努利(TPMB)滤波器:一种用于存活轨迹,另一种用于所有轨迹。首先构建了包含检测概率的增广轨迹状态,进而提出了两种新的状态转移模型和一种新的量测模型,随后推导了检测概率未知条件下TPMB滤波器的递推公式。此外,本文给出了未知检测概率的TPMB滤波器针对存活轨迹和全轨迹的贝塔-高斯详细实现。仿真结果表明,在检测概率未知的情况下,所提出的TPMB滤波器能实现鲁棒的跟踪性能,并有效估计多目标轨迹。

关键词:轨迹泊松多伯努利;贝塔-高斯;检测概率;存活轨迹;所有轨迹

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bishop CM, 2006. Pattern Recognition and Machine Learning. Springer, New York, USA.

[2]Blackman SS, 2004. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp Electron Syst Mag, 19(1):5-18.

[3]Chen TT, Wang RL, Dai B, et al., 2016. Likelihood-field-model-based dynamic vehicle detection and tracking for self-driving. IEEE Trans Intell Transport Syst, 17(11):3142-3158.

[4]Fortmann T, Bar-Shalom Y, Scheffe M, 1983. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J Oceanic Eng, 8(3):173-184.

[5]Gao L, Battistelli G, Chisci L, 2020. Random finite set based distributed multirobot slam. IEEE Trans Robot, 36(6):1758-1777.

[6]García-Fernández ÁF, Svensson L, 2019. Trajectory PHD and CPHD filters. IEEE Trans Signal Process, 67(22):5702-5714.

[7]García-Fernández ÁF, Williams JL, Granström K, et al., 2018. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation. IEEE Trans Aerosp Electron Syst, 54(4):1883-1901.

[8]García-Fernández ÁF, Rahmathullah AS, Svensson L, 2020a. A metric on the space of finite sets of trajectories for evaluation of multi-target tracking algorithms. IEEE Trans Signal Process, 68:3917-3928.

[9]García-Fernández ÁF, Svensson L, Morelande MR, 2020b. Multiple target tracking based on sets of trajectories. IEEE Trans Aerosp Electron Syst, 56(3):1685-1707.

[10]García-Fernández ÁF, Svensson L, Williams JL, et al., 2020c. Trajectory poisson multi-Bernoulli filters. IEEE Trans Signal Process, 68:4933-4945.

[11]Granström K, Natale A, Braca P, et al., 2015. Gamma gaussian inverse wishart probability hypothesis density for extended target tracking using x-band marine radar data. IEEE Trans Geosci Remote Sens, 53(12):6617-6631.

[12]Granström K, Svensson L, Xia YX, et al., 2018. Poisson multi-Bernoulli mixture trackers: Continuity through random finite sets of trajectories. Proc 21st Int Confon Information Fusion, p.1-5.

[13]Granström K, Fatemi M, Svensson L, 2020. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering. IEEE Trans Aerosp Electron Syst, 56(1):208-225.

[14]Houssineau J, Zeng JJ, Jasra A, 2021. Uncertainty modelling and computational aspects of data association. Stat Comput, 31(5):59.

[15]Joshi SK, Baumgartner SV, Krieger G, 2022. Tracking and track management of extended targets in range-doppler using range-compressed airborne radar data. IEEE Trans Geosci Remote Sens, 60:5102720.

[16]Li GC, Kong LJ, Yi W, et al., 2021. Robust poisson multi-Bernoulli mixture filter with unknown detection probability. IEEE Trans Veh Technol, 70(1):886-899.

[17]Li TC, Chen HM, Sun SD, et al., 2019. Joint smoothing and tracking based on continuous-time target trajec-tory function fitting. IEEE Trans Automat Sci Eng, 16(3):1476-1483.

[18]Mahler RPS, 2007. Statistical multisource-multitarget information fusion. Artech House, Boston, USA.

[19]Mahler RPS, 2014. Advances in statistical multisource-multitarget information fusion. Artech House, Boston, USA.

[20]Mahler RPS, Vo BT, Vo BN, 2011. Cphd filtering with unknown clutter rate and detection profile. IEEE Trans Signal Process, 59(8):3497-3513.

[21]Menegaz HMT, Battistini S, 2018. Switching multiple model filter for boost-phase missile tracking. IEEE Trans Aerosp Electron Syst, 54(5):2547-2553.

[22]Pang S, Morris D, Radha H, 2021. 3d multi-object tracking using random finite set-based multiple measurement models filtering (rfs-m3) for autonomous vehicles. Proc IEEE Int Conf on Robotics and Automation, p.13701-13707.

[23]Vo BN, Ma WK, 2006. The gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091-4104.

[24]Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554-6567.

[25]Vo BT, Vo BN, 2013. Labeled random finite sets and multi-object conjugate priors. IEEE Trans Signal Process, 61(13):3460-3475.

[26]Vo BT, Vo BN, Cantoni A, 2007. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans Signal Process, 55(7):3553-3567.

[27]Vo BT, Vo BN, Cantoni A, 2009. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process, 57(2):409-423.

[28]Vo BT, Vo BN, Hoseinnezhad R, et al., 2013. Robust multi-Bernoulli filtering. IEEE J Sel Top Signal Process, 7(3):399-409.

[29]Wei SX, Zhang BX, Yi W, 2022. Trajectory PHD and CPHD filters with unknown detection profile. IEEE Trans Veh Technol, 71(8):8042-8058.

[30]Wu SY, Zhou YS, Xie Y, et al., 2022. Robust poisson multi-Bernoulli mixture filter using adaptive birth dis-tributions for extended targets. Digital Signal Process, 126:103459.

[31]Xia YX, Granström K, Svensson L, et al., 2022. Poisson multi-Bernoulli approximations for multiple extended object filtering. IEEE Trans Aerosp Electron Syst, 58(2):890-906.

[32]Xie XX, Wang Y, Guo JQ, et al., 2023. Pmbm filter for multiple extended targets with unknown clutter rate and detection probability. IEEE Sensors J, 23(15):17133-17147.

[33]Yan B, Paolini E, Xu LP, et al., 2022. A target detection and tracking method for multiple radar systems. IEEE Trans Geosci Remote Sens, 60:5114721.

[34]Yu M, Gong LY, Oh H, et al., 2018. Multiple model ballistic missile tracking with state-dependent transitions and gaussian particle filtering. IEEE Trans Aerosp Electron Syst, 54(3):1066-1081.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE