Full Text:   <970>

Summary:  <101>

CLC number: 

On-line Access: 2025-06-04

Received: 2024-08-13

Revision Accepted: 2024-12-22

Crosschecked: 2025-09-04

Cited: 0

Clicked: 731

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zihang Qi

https://orcid.org/0000-0002-5488-6404

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.8 P.1501-1508

http://doi.org/10.1631/FITEE.2400709


Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications


Author(s):  Yuqi XIA, Xiuping LI, Genqiang KOU, Wenyu ZHAO, Jie ZHANG, Muhammad ISHFAQ, Zihang QI

Affiliation(s):  State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China; more

Corresponding email(s):   qizihang@bupt.edu.cn

Key Words: 


Share this article to: More <<< Previous Article|

Yuqi XIA, Xiuping LI, Genqiang KOU, Wenyu ZHAO, Jie ZHANG, Muhammad ISHFAQ, Zihang QI. Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1501-1508.

@article{title="Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications",
author="Yuqi XIA, Xiuping LI, Genqiang KOU, Wenyu ZHAO, Jie ZHANG, Muhammad ISHFAQ, Zihang QI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1501-1508",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400709"
}

%0 Journal Article
%T Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications
%A Yuqi XIA
%A Xiuping LI
%A Genqiang KOU
%A Wenyu ZHAO
%A Jie ZHANG
%A Muhammad ISHFAQ
%A Zihang QI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1501-1508
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400709

TY - JOUR
T1 - Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications
A1 - Yuqi XIA
A1 - Xiuping LI
A1 - Genqiang KOU
A1 - Wenyu ZHAO
A1 - Jie ZHANG
A1 - Muhammad ISHFAQ
A1 - Zihang QI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1501
EP - 1508
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400709


Abstract: 
A 3D-printed dual-band dual-polarization gap waveguide (GWG) slot antenna array for Ku-band satellite communications (SATCOMs) is presented in this paper. Two stacked GWGs excite the quasi-TE420 and quasi-TE240 modes in the cavity respectively through orthogonal slots. An unequal power divider with a large power division ratio is proposed based on a ridge gap waveguide(RGW). Two power tapering distribution networks are realized for dual polarizations, and the sidelobe level (SLL) is suppressed. The antenna is fabricated in parts by direct metal laser sintering (DMLS), and the whole antenna is obtained by screw assembly. The measured impedance bandwidth well covers both the transmitting band (Tx, from 14 GHz to 14.5 GHz) and the receiving band (Rx, from 12.25 GHz to 12.75 GHz) required for Ku-band SATCOMs. Measurement results show that the maximum gain reaches 25.6 dBi, and the radiation efficiency of the dual-band is >72%.

用于Ku波段卫星通信的3D打印低旁瓣双频双极化阵列天线

夏宇琪1,2,3,4,李秀萍1,2,3,4,寇根强1,2,3,4,赵文禹1,2,3,4,张洁1,2,3,4,Muhammad ISHFAQ1,2,3,4,齐紫航1,2,3,4
1信息光子学与光通信全国重点实验室,中国北京市,100876
2泛网无线通信教育部重点实验室,中国北京市,100876
3安全生产智能监控北京市重点实验室,中国北京市,100876
4北京邮电大学电子工程学院,中国北京市,100876
摘要:介绍了一种用于Ku波段卫星通信(SATCOM)的3D打印双频双极化间隙波导(GWG)缝隙阵列天线。两个堆叠的GWG通过正交槽分别激发腔内的准TE420和准TE240模式。基于脊间隙波导(RGW),提出一种具有大功率分配比的不等分功率分配器。实现了双极化功率锥形分布馈电网络,抑制了旁瓣电平(SLL)。天线通过直接金属激光烧结(DMLS)分层打印,整个天线通过螺钉组装在一起。测量的阻抗带宽覆盖了Ku波段SATCOM所需的发射频段(Tx,从14.0到14.5 GHz)和接收频段(Rx,从12.25到12.75 GHz)。测量结果显示,最大增益达到25.6 dBi,双频段的辐射效率超过72%。

关键词:低旁瓣;缝隙天线阵列;锥形分布馈网;卫星通信;间隙波段天线

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbari M, Farahbakhsh A, Sebak AR, 2019. Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna. IEEE Trans Antenn Propag, 67(1):251-259.

[2]Chen M, Fang XC, Wang W, et al., 2020. Dual-band dual-polarized waveguide slot antenna for SAR applications. IEEE Antenn Wirel Propag Lett, 19(10):1719-1723.

[3]Cheng YJ, Tan FY, Zhou MM, et al., 2020. Dual-polarized wideband plate array antenna with high polarization isolation and low cross polarization for D-band high-capacity wireless application. IEEE Antenn Wirel Propag Lett, 19(12):2023-2027.

[4]Dimitrov KC, Lee Y, Min BW, et al., 2020. Circularly polarized T-shaped slot waveguide array antenna for satellite communications. IEEE Antenn Wirel Propag Lett, 19(2):317-321.

[5]Fenech H, Amos S, Tomatis A, et al., 2015. High throughput satellite systems: an analytical approach. IEEE Trans Aerosp Electr Syst, 51(1):192-202.

[6]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2018. Single-layer circularly-polarized Ka-band antenna using gap waveguide technology. IEEE Trans Antenn Propag, 66(8):3837-3845.

[7]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2019a. Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide. IEEE Antenn Wirel Propag Lett, 18(7):1463-1467.

[8]Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, et al., 2019b. 8×8 Ka-band dual-polarized array antenna based on gap waveguide technology. IEEE Trans Antenn Propag, 67(7):4579-4588.

[9]Garcia-Marin E, Sanchez-Olivares P, Masa-Campos JL, et al., 2021. Dual circularly polarized array antenna based on corporate feeding network in square waveguide technology. IEEE Trans Antenn Propag, 69(3):1763-1768.

[10]Huang GL, Zhou SG, Chio TH, et al., 2015. A low profile and low sidelobe wideband slot antenna array feb by an amplitude-tapering waveguide feed-network. IEEE Trans Antenn Propag, 63(1):419-423.

[11]Jiang X, Jia FX, Cao Y, et al., 2019. Ka-band 8×8 low-sidelobe slot antenna array using a 1-to-64 high-efficiency network designed by new printed RGW technology. IEEE Antenn Wirel Propag Lett, 18(6):1248-1252.

[12]Liu PY, Pedersen GF, Zhang S, 2022. Wideband low-sidelobe slot array antenna with compact tapering feeding network for E-band wireless communications. IEEE Trans Antenn Propag, 70(4):2676-2685.

[13]Lu YL, Shen SH, You Y, et al., 2023. Wideband dual linearly polarized hollow-waveguide septum antenna array for Ku-band satellite communications. IEEE Trans Antenn Propag, 71(3):2433-2442.

[14]Miura Y, Hirokawa J, Ando M, et al., 2011. Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band. IEEE Trans Antenn Propag, 59(8):2844-2851.

[15]Ran JQ, Jin C, Zhang PY, et al., 2022. High-gain and low-loss dual-polarized antenna array with reduced sidelobe level based on gap waveguide at 28 GHz. IEEE Antenn Wirel Propag Lett, 21(5):1022-1026.

[16]Sun FQ, Li YJ, Wang JH, et al., 2022. A millimeter-wave wideband dual-polarized antenna array with 3-D-printed air-filled differential feeding cavities. IEEE Trans Antenn Propag, 70(2):1020-1032.

[17]Yang QL, Gao S, Luo Q, et al., 2021. A dual-polarized planar antenna array differentially-fed by orthomode transducer. IEEE Trans Antenn Propag, 69(5):2637-2647.

[18]You S, Ahn SC, Kim YS, et al., 2022. Asymmetric iris structures for dual-polarization waveguide slot arrays for E-band wireless backhaul systems. IEEE Trans Antenn Propag, 70(4):2633-2644.

[19]Yu L, Yang X, Zhang K, et al., 2023. Millimeter-wave dual-band dual-polarized shared-aperture antenna for satellite communication applications. IEEE MTT-S Int Wireless Symp, p.1-3.

[20]Zaman AU, Kildal PS, 2014. Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology. IEEE Trans Antenn Propag, 62(6):2992-3001.

[21]Zhang J, Li XP, Qi ZH, et al., 2022. Dual-band dual-polarization horn antenna array based on orthomode transducers with high isolation for satellite communication. IEEE Trans Antenn Propag, 70(10):9247-9259.

[22]Zhang JJ, Zhao DX, You XH, 2022. Analysis and design of a CMOS LNA with transformer-based integrated notch filter for Ku-band satellite communications. IEEE Trans Microw Theory Tech, 70(1):790-800.

[23]Zhao X, Tian BN, Yeo SP, et al., 2017. Low-profile broadband dual-polarized integrated patch subarray for X-band synthetic aperture radar payload on small satellite. IEEE Antenn Wirel Propag Lett, 16:1735-1738.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE