Full Text:   <1712>

Suppl. Mater.: 

CLC number: TP18

On-line Access: 2025-10-13

Received: 2024-11-01

Revision Accepted: 2025-05-26

Crosschecked: 2025-10-13

Cited: 0

Clicked: 701

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhenxue HE

https://orcid.org/0000-0001-7041-8582

Lixin MIAO

https://orcid.org/0009-0008-3213-6857

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.9 P.1577-1595

http://doi.org/10.1631/FITEE.2400967


An adaptive dung beetle optimizer based on an elastic annealing mechanism and its application to numerical problems and optimization of Reed–Muller logic circuits


Author(s):  Lixin MIAO, Zhenxue HE, Xiaojun ZHAO, Yijin WANG, Xiaodan ZHANG, Kui YU, Limin XIAO, Zhisheng HUO

Affiliation(s):  Key Laboratory of Agricultural Big Data of Hebei Province, Hebei Agricultural University, Baoding 071001, China; more

Corresponding email(s):   20232060116@pgs.hebau.edu.cn, hezhenxue@buaa.edu.cn, xxzhxj@hebau.edu.cn, wangyijin0409@sina.com, 531123@hebau.edu.cn, yukui@hebau.edu.cn, xiaolm@buaa.edu.cn, huozhisheng1122@126.com

Key Words:  Metaheuristic algorithm, Dung beetle optimizer, Convergence factor, Greedy difference optimization strategy, Elastic annealing mechanism


Lixin MIAO, Zhenxue HE, Xiaojun ZHAO, Yijin WANG, Xiaodan ZHANG, Kui YU, Limin XIAO, Zhisheng HUO. An adaptive dung beetle optimizer based on an elastic annealing mechanism and its application to numerical problems and optimization of Reed–Muller logic circuits[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1577-1595.

@article{title="An adaptive dung beetle optimizer based on an elastic annealing mechanism and its application to numerical problems and optimization of Reed–Muller logic circuits",
author="Lixin MIAO, Zhenxue HE, Xiaojun ZHAO, Yijin WANG, Xiaodan ZHANG, Kui YU, Limin XIAO, Zhisheng HUO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1577-1595",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400967"
}

%0 Journal Article
%T An adaptive dung beetle optimizer based on an elastic annealing mechanism and its application to numerical problems and optimization of Reed–Muller logic circuits
%A Lixin MIAO
%A Zhenxue HE
%A Xiaojun ZHAO
%A Yijin WANG
%A Xiaodan ZHANG
%A Kui YU
%A Limin XIAO
%A Zhisheng HUO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1577-1595
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400967

TY - JOUR
T1 - An adaptive dung beetle optimizer based on an elastic annealing mechanism and its application to numerical problems and optimization of Reed–Muller logic circuits
A1 - Lixin MIAO
A1 - Zhenxue HE
A1 - Xiaojun ZHAO
A1 - Yijin WANG
A1 - Xiaodan ZHANG
A1 - Kui YU
A1 - Limin XIAO
A1 - Zhisheng HUO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1577
EP - 1595
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400967


Abstract: 
The dung beetle optimizer (DBO) is a metaheuristic algorithm with fast convergence and powerful search capabilities, which has shown excellent performance in solving various optimization problems. However, it suffers from the problems of easily falling into local optimal solutions and poor convergence accuracy when dealing with large-scale complex optimization problems. Therefore, we propose an adaptive DBO (ADBO) based on an elastic annealing mechanism to address these issues. First, the convergence factor is adjusted in a nonlinear decreasing manner to balance the requirements of global exploration and local exploitation, thus improving the convergence speed and search quality. Second, a greedy difference optimization strategy is introduced to increase population diversity, improve the global search capability, and avoid premature convergence. Finally, the elastic annealing mechanism is used to perturb the randomly selected individuals, helping the algorithm escape local optima and thereby improve solution quality and algorithm stability. The experimental results on the CEC 2017 and CEC 2022 benchmark function sets and MCNC benchmark circuits verify the effectiveness, superiority, and universality of ADBO.

一种基于弹性退火机制的自适应蜣螂优化器及其在数值问题和Reed–Muller逻辑电路优化中的应用

苗栎欣1,何振学1,赵晓君1,王伊瑾1,张晓丹1,于魁1,肖利民2,霍志胜3
1河北农业大学河北省农业大数据重点实验室,中国保定市,071001
2北京航空航天大学计算机学院,中国北京市,100191
3北京航空航天大学电子信息工程学院,中国北京市,100191
摘要:蜣螂优化器(DBO)是一种具备快速收敛和强大寻优能力的元启发式算法,在解决各种优化问题时展现出优良性能。然而,该算法在处理大规模复杂优化问题时存在易陷入局部最优解和收敛精度不高的问题。为此,提出一种基于弹性退火机制的自适应蜣螂优化器(ADBO)。首先,采用非线性递减方式调整收敛因子,以平衡全局探索和局部开发的需求,从而提高收敛速度和搜索质量;其次,引入贪心差分优化策略以增强种群多样性,提高全局搜索能力并避免过早收敛;最后,采用弹性退火机制对随机选择的个体进行扰动,有助于跳出局部最优,提高解的质量和算法稳定性。基于CEC 2017、CEC 2022基准函数集和MCNC基准测试电路的实验结果验证了ADBO的有效性、优越性和普适性。

关键词:元启发式算法;蜣螂优化器;收敛因子;贪心差分优化策略;弹性退火机制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdollahzadeh B, Gharehchopogh FS, Khodadadi N, et al., 2022. Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Adv Eng Softw, 174:103282.

[2]Ahmadi-Javid A, 2011. Anarchic society optimization: a human-inspired method. IEEE Congress of Evolutionary Computation, p.2586-2592.

[3]Ali JM, Hussain MA, Tade MO, et al., 2015. Artificial intelligence techniques applied as estimator in chemical process systems–a literature survey. Expert Syst Appl, 42(14):5915-5931.

[4]Amores D, Tanin E, Vasardani M, 2024. Flexible paths: a path planning approach to dynamic navigation. IEEE Trans Intell Transp Syst, 25(6):4795-4808.

[5]Azizi M, Talatahari S, Gandomi AH, 2023. Fire hawk optimizer: a novel metaheuristic algorithm. Artif Intell Rev, 56(1):287-363.

[6]Dehghani M, Trojovský P, 2021. Teamwork optimization algorithm: a new optimization approach for function minimization/maximization. Sensors, 21(13):4567.

[7]Dehghani M, Montazeri Z, Trojovská E, et al., 2023. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst, 259:110011.

[8]El-Kenawy ESM, Khodadadi N, Mirjalili S, et al., 2024. Greylag goose optimization: nature-inspired optimization algorithm. Expert Syst Appl, 238:122147.

[9]Grefenstette JJ, 1993. Genetic algorithms and machine learning. Proc 6th Annual Conf on Computational Learning Theory, p.3-4.

[10]Hama Rashid DN, Rashid TA, Mirjalili S, 2021. ANA: ant nesting algorithm for optimizing real-world problems. Mathematics, 9(23):3111.

[11]Hamad RK, Rashid TA, 2024. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evol Syst, 15(4):1249-1274.

[12]Han X, Meng ZL, Xia X, et al., 2024. Foundation intelligence for smart infrastructure services in Transportation 5.0. IEEE Trans Intell Veh, 9(1):39-47.

[13]He JC, Fu LH, 2024. Robot path planning based on improved dung beetle optimizer algorithm. J Braz Soc Mech Sci Eng, 46(4):235.

[14]He ZX, Pan YH, Wang KJ, et al., 2021. Area optimization for MPRM logic circuits based on improved multiple disturbances fireworks algorithm. Appl Math Comput, 399:126008.

[15]Heidari AA, Mirjalili S, Faris H, et al., 2019. Harris hawks optimization: algorithm and applications. Fut Gener Comput Syst, 97:849-872.

[16]Ikram RMA, Dehrashid AA, Zhang BQ, et al., 2023. A novel swarm intelligence: cuckoo optimization algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment. Stoch Environ Res Risk Assess, 37(5):1717-1743.

[17]Kaur S, Awasthi LK, Sangal AL, et al., 2020. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell, 90:103541.

[18]Kaveh A, Dadras A, 2017. A novel metaheuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw, 110:69-84.

[19]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Proc Int Conf on Neural Networks, p.1942-1948.

[20]Kirkpatrick S, Gelatt CD Jr, Vecchi MP, 1983. Optimization by simulated annealing. Science, 220(4598):671-680.

[21]Li J, He Z, Wang SY, 2023. Advances in operation and finance in supply chains. Int J Prod Econ, 255:108707.

[22]Li LH, Liu LL, Shao YX, et al., 2023. Enhancing swarm intelligence for obstacle avoidance with multi-strategy and improved dung beetle optimization algorithm in mobile robot navigation. Electronics, 12(21):4462.

[23]Mirjalili S, Lewis A, 2016. The whale optimization algorithm. Adv Eng Softw, 95:51-67.

[24]Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adv Eng Softw, 69:46-61.

[25]Peraza-Vázquez H, Peña-Delgado A, Merino-Treviño M, et al., 2024. A novel metaheuristic inspired by horned lizard defense tactics. Artif Intell Rev, 57(3):59.

[26]Rashedi E, Nezamabadi-Pour H, Saryazdi S, 2009. GSA: a gravitational search algorithm. Inform Sci, 179(13):2232-2248.

[27]Ray T, Liew KM, 2003. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput, 7(4):386-396.

[28]Reynolds RG, Peng B, 2004. Cultural algorithms: modeling of how cultures learn to solve problems. 16th IEEE Int Conf on Tools with Artificial Intelligence, p.166-172.

[29]Romanov AM, 2024. Perfect mixed codes from generalized Reed–Muller codes. Des Codes Cryptogr, 92(6):1747-1759.

[30]Shao YX, He ZX, Zhou YH, et al., 2021. Area optimization of MPRM circuits based on M-AFSA. J Beijing Univ Aeronaut Astronaut, 49(3):693-701 (in Chinese).

[31]Shen QW, Zhang DM, Xie MS, et al., 2023. Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning. Symmetry, 15(7):1432.

[32]Storn R, Price K, 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim, 11(4):341-359.

[33]Sun F, Wang PJ, Yu HZ, 2013. Best polarity searching for ternary FPRM logic circuit area based on whole annealing genetic algorithm. IEEE 10th Int Conf on ASIC, p.1-4.

[34]Tan Y, Zhu YC, 2010. Fireworks algorithm for optimization. 1st Int Conf on Advances in Swarm Intelligence, p.355-364.

[35]Wang LY, Cao QJ, Zhang ZX, et al., 2022. Artificial rabbits optimization: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell, 114:105082.

[36]Wang PJ, Li H, Wang ZH, 2010. MPRM expressions minimization based on simulated annealing genetic algorithm. IEEE Int Conf on Intelligent Systems and Knowledge Engineering, p.261-265.

[37]Xue JK, Shen B, 2023. Dung beetle optimizer: a new metaheuristic algorithm for global optimization. J Supercomput, 79(7):7305-7336.

[38]Zhou YH, He ZX, Liang XY, et al., 2021. Optimization of XNOR/OR circuit area based on BABFA. J Beijing Univ Aeronaut Astronaut, 48(10):2031-2039 (in Chinese).

[39]Zhou YH, He ZX, Jiang JH, et al., 2023. Fast area optimization approach for XNOR/OR-based fixed polarity Reed–Muller logic circuits based on multi-strategy wolf pack algorithm. ACM Trans Des Autom Electron Syst, 28(3):45.

[40]Zhu F, Li GS, Tang H, et al., 2024. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst Appl, 236:121219.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE