Full Text:   <316>

Summary:  <86>

Suppl. Mater.: 

CLC number: TP391

On-line Access: 2025-11-17

Received: 2025-06-15

Revision Accepted: 2025-11-18

Crosschecked: 2025-08-25

Cited: 0

Clicked: 473

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shijie HAN

https://orcid.org/0009-0003-3212-5625

Jingshu ZHANG

https://orcid.org/0009-0003-2233-8563

Hongguang LI

https://orcid.org/0009-0003-0625-8213

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.1822-1831

http://doi.org/10.1631/FITEE.2500414


FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration


Author(s):  Shijie HAN, Jingshu ZHANG, Yiqing SHEN, Kaiyuan YAN, Hongguang LI

Affiliation(s):  Department of Industrial Engineering and Operations Research, Columbia University, New York 10027, USA; more

Corresponding email(s):   sh4460@columbia.edu, zhangjingshu@mail.shufe.edu.cn, yshen92@jhu.edu, yankaiyuani@163.com, harvey2@mail.ustc.edu.cn

Key Words:  Large language model (LLM), Instruction-tuned financial LLM, Real-time stock analysis, Evaluation framework and dataset


Shijie HAN, Jingshu ZHANG, Yiqing SHEN, Kaiyuan YAN, Hongguang LI. FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1822-1831.

@article{title="FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration",
author="Shijie HAN, Jingshu ZHANG, Yiqing SHEN, Kaiyuan YAN, Hongguang LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="1822-1831",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500414"
}

%0 Journal Article
%T FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration
%A Shijie HAN
%A Jingshu ZHANG
%A Yiqing SHEN
%A Kaiyuan YAN
%A Hongguang LI
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 1822-1831
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500414

TY - JOUR
T1 - FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration
A1 - Shijie HAN
A1 - Jingshu ZHANG
A1 - Yiqing SHEN
A1 - Kaiyuan YAN
A1 - Hongguang LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 1822
EP - 1831
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500414


Abstract: 
Current financial large language models (FinLLMs) exhibit two major limitations: the absence of standardized evaluation metrics for stock analysis quality and insufficient analytical depth. We address these limitations with two contributions. First, we introduce AnalyScore, a systematic framework for evaluating the quality of stock analysis. Second, we construct Stocksis, an expert-curated dataset designed to enhance the financial analysis capabilities of large language models (LLMs). Building on Stocksis, together with a novel integration framework and quantitative tools, we develop FinSphere, an artificial intelligence (AI) agent that generates professional-grade stock analysis reports. Evaluations with AnalyScore show that FinSphere consistently surpasses general-purpose LLMs, domain-specific FinLLMs, and existing agent-based systems, even when the latter are enhanced with real-time data access and few-shot guidance. The findings highlight FinSphere's significant advantages in analytical quality and real-world applicability.

FinSphere:一款搭载指令微调大语言模型及集成领域专用工具的实时股票分析代理

韩世杰1,3,张景舒2,3,沈逸卿3,4,闫开元3,李宏广3
1哥伦比亚大学工业工程与运筹学系,美国纽约市,10027
2上海财经大学信息管理与工程学院,中国上海市,200433
3九方智投控股有限公司,中国上海市,201702
4约翰斯·霍普金斯大学计算机科学系,美国巴尔的摩市,21218
摘要:当前金融大语言模型(FinLLM)存在两大局限:缺乏股票分析质量的标准化评估指标,以及分析深度不足。我们通过两项创新突破这些局限。首先推出AnalyScore,一套评估股票分析质量的系统化框架;其次构建一个由专家精心筛选的数据集Stocksis,旨在提升大语言模型(LLM)的金融分析能力。基于Stocksis数据集,结合创新集成框架与量化工具,我们开发出FinSphere智能体,可生成专业级股票分析报告。AnalyScore评估表明,FinSphere在分析质量和实际应用能力方面显著优于通用LLM、领域专用金融LLM及现有智能体系统,即便后者配备实时数据访问和少样本指导功能亦然。研究结果凸显了FinSphere在分析质量与现实应用中的显著优势。

关键词:大语言模型(LLM);指令微调金融大模型;实时股票分析;评估框架与数据集

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bhat R, Jain B, 2024. Stock price trend prediction using emotion analysis of financial headlines with distilled LLM model. Proc 17th Int Conf on Pervasive Technologies Related to Assistive Environments, p.67-73.

[2]Chen J, Zhou PL, Hua YN, et al., 2024. FinTextQA: a dataset for long-form financial question answering. Proc 62nd Annual Meeting of the Association for Computational Linguistics, p.6025-6047.

[3]Chen ZY, Chen WH, Smiley C, et al., 2021. FinQA: a dataset of numerical reasoning over financial data. Proc Conf on Empirical Methods in Natural Language Processing, p.3697-3711.

[4]DeepSeek-AI, 2024. DeepSeek-V3 technical report. https://arxiv.org/abs/2412.19437

[5]Ding H, Li YH, Wang JH, et al., 2024. Large language model agent in financial trading: a survey. https://arxiv.org/abs/2408.06361

[6]Guo X, Xia HT, Liu ZW, et al., 2025. FinEval: a Chinese financial domain knowledge evaluation benchmark for large language models. Proc Conf of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies, p.6258-6292.

[7]Gupta U, 2023. GPT-InvestAR: enhancing stock investment strategies through annual report analysis with large language models.

[8]Han SJ, Kang HQ, Jin B, et al., 2024. XBRL agent: leveraging large language models for financial report analysis. Proc 5th ACM Int Conf on AI in Finance, p.856-864.

[9]Huang AH, Wang H, Yang Y, 2023. FinBERT: a large language model for extracting information from financial text. Contemporary Acc Res, 40(2):806-841.

[10]Islam P, Kannappan A, Kiela D, et al., 2023. FinanceBench: a new benchmark for financial question answering.

[11]Kim A, Muhn M, Nikolaev V, 2024. Financial statement analysis with large language models.

[12]Krause D, 2023. Large language models and generative AI in finance: an analysis of ChatGPT, Bard, and Bing AI. SSRN Electr J.

[13]Lei Y, Li JT, Jiang M, et al., 2023. CFBenchmark: Chinese financial assistant benchmark for large language model.

[14]Li HX, Gao HY, Wu CZ, et al., 2025. Extracting financial data from unstructured sources: leveraging large language models. J Inform Syst, 39(1):135-156.

[15]Li YH, Wang SF, Ding H, et al., 2023. Large language models in finance: a survey. Pro 4th ACM Int Conf on AI in Finance, p.374-382.

[16]Lin CY, 2004. ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out. Association for Computational Linguistics, Barcelona, Spain, p.74-81. https://aclanthology.org/W04-1013

[17]Liu CH, Arulappan A, Naha R, et al., 2024. Large language models and sentiment analysis in financial markets: a review, datasets and case study. IEEE Access, 12:134041-134061.

[18]Liu Z, Huang DG, Huang KY, et al., 2020. FinBERT: a pre-trained financial language representation model for financial text mining. Proc 29th Int Joint Conf on Artificial Intelligence, p.4513-4519.

[19]Ni HW, Meng SC, Chen XP, et al., 2024. Harnessing earnings reports for stock predictions: a QLoRA-enhanced LLM approach.

[20]Nie YQ, Kong YX, Dong XW, et al., 2024. A survey of large language models for financial applications: progress, prospects and challenges.

[21]Papineni K, Roukos S, Ward T, et al., 2002. BLEU: a method for automatic evaluation of machine translation. Proc 40th Annual Meeting of the Association for Computational Linguistics, p.311-318.

[22]Park T, 2024. Enhancing anomaly detection in financial markets with an LLM-based multi-agent framework.

[23]Wu SJ, Irsoy O, Lu S, et al., 2023. BloombergGPT: a large language model for finance.

[24]Xie QQ, Han WG, Zhang X, et al., 2023. PIXIU: a large language model, instruction data and evaluation benchmark for finance. Proc 37th Int Conf on Neural Information Processing Systems, Article 1454. https://dl.acm.org/doi/10.5555/3666122.3667576

[25]Yang HY, Liu XY, Wang CD, 2023. FinGPT: open-source financial large language models.

[26]Yang HY, Zhang BY, Wang N, et al., 2024. FinRobot: an open-source AI agent platform for financial applications using large language models.

[27]Yang Y, Uy MCS, Huang A, 2020. FinBERT: a pretrained language model for financial communications.

[28]Yang Y, Tang YX, Tam KY, 2023. InvestLM: a large language model for investment using financial domain instruction tuning.

[29]Yu YY, Li HH, Chen Z, et al., 2024. FinMem: a performance-enhanced LLM trading agent with layered memory and character design. Proc AAAI Symp Series, 3(1):595-597.

[30]Zhang BY, Yang HY, Liu XY, 2023. Instruct-FinGPT: financial sentiment analysis by instruction tuning of general-purpose large language models.

[31]Zhang WT, Zhao LX, Xia HC, et al., 2024. A multimodal foundation agent for financial trading: tool-augmented, diversified, and generalist. Proc 30th ACM SIGKDD Conf on Knowledge Discovery and Data Mining, p.4314-4325.

[32]Zhao HQ, Liu ZL, Wu ZH, et al., 2024. Revolutionizing finance with LLMs: an overview of applications and insights.

[33]Zhu FB, Lei WQ, Huang YC, et al., 2021. TAT-QA: a question answering benchmark on a hybrid of tabular and textual content in finance. Proc 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int Joint Conf on Natural Language Processing, p.3277-3287.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE