
CLC number: TP31
On-line Access: 2026-01-09
Received: 2025-07-30
Revision Accepted: 2025-10-20
Crosschecked: 2026-01-12
Cited: 0
Clicked: 377
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-1826-1850
https://orcid.org/0000-0002-0575-7155
Li WEIGANG, Juliano Adorno MAIA, Emilia STENZEL, Lucas Ramson SIEFERT. Eixão-UAM: LLM-assisted iterative design of a low-altitude urban air mobility corridor in Brasilia[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2421-2439.
@article{title="Eixão-UAM: LLM-assisted iterative design of a low-altitude urban air mobility corridor in Brasilia",
author="Li WEIGANG, Juliano Adorno MAIA, Emilia STENZEL, Lucas Ramson SIEFERT",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2421-2439",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500541"
}
%0 Journal Article
%T Eixão-UAM: LLM-assisted iterative design of a low-altitude urban air mobility corridor in Brasilia
%A Li WEIGANG
%A Juliano Adorno MAIA
%A Emilia STENZEL
%A Lucas Ramson SIEFERT
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2421-2439
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500541
TY - JOUR
T1 - Eixão-UAM: LLM-assisted iterative design of a low-altitude urban air mobility corridor in Brasilia
A1 - Li WEIGANG
A1 - Juliano Adorno MAIA
A1 - Emilia STENZEL
A1 - Lucas Ramson SIEFERT
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2421
EP - 2439
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500541
Abstract: The development of urban air mobility (UAM) systems requires scalable, regulation-aware planning of low-altitude airspace and supporting infrastructure. This study proposes an end-to-end framework for the design, simulation, and iterative optimization of a structured UAM corridor over ord'>
[1]Abdellaoui R, Naser F, Velieva A, et al., 2025. Applying a comparative performance assessment framework to different airspace management concepts for urban air mobility. CEAS Aeronaut J, 16(3):827-847.
[2]Alolaiwy M, Hawsawi T, Zohdy M, et al., 2023. Multi-objective routing optimization in electric and flying vehicles: a genetic algorithm perspective. Appl Sci, 13(18):10427.
[3]ANAC, 2017a. Classes de Drones (in Portuguese). https://www.gov.br/anac/pt-br/assuntos/drones/classes-de-drones [Accessed on July 30, 2025].
[4]ANAC, 2017b. Requisitos Gerais para aeronaves não tripuladas de uso civil (RBAC-E 94) (in Portuguese). https://www.anac.gov.br/assuntos/legislacao/legislacao-1/rbha-e-rbac/rbac/rbac-e-94 [Accessed on July 30, 2025].
[5]Bayer DM, Bayer F, 2015. Previsão da umidade relativa do ar de brasília por meio do modelo beta autorregressivo de médias móveis. Rev Bras Meteorol, 30(3):319-326 (in Portuguese).
[6]Chan YY, Ng KKH, Lee CKM, et al., 2023. Wind dynamic and energy-efficiency path planning for unmanned aerial vehicles in the lower-level airspace and urban air mobility context. Sustain Energy Technol Assess, 57:103202.
[7]Cheng AW, Witzberger KE, Isaacson DR, et al., 2022. National Campaign (NC)-1 Strategic Conflict Management Simulation (X4) Final Report. NASA/TM-2022-0018159, NASA, Moffett Field.
[8]Cohen AP, Shaheen SA, Farrar EM, 2021. Urban air mobility: history, ecosystem, market potential, and challenges. IEEE Trans Intell Transp Syst, 22(9):6074-6087.
[9]da Silva R, do Sul Milholi da Silva R, de Almeida Regis J, et al., 2020. Acesso ao espaço aéreo brasileiro por aeronaves não tripuladas. Rev CIAAR, 1(1):23-40 (in Portuguese).
[10]DECEA, 2023. Remotely piloted aircraft systems and access to Brazilian airspace. Brazilian Airspace Control Department, ICA 100-40.
[11]Deniz S, Wang ZB, 2024. Autonomous conflict resolution in urban air mobility: a deep multi-agent reinforcement learning approach. Proc AIAA Aviation Forum and Ascend, Article 4005.
[12]de Vasconcellos E, Regis JM, 2022. Brazil’s DECEA Launches UTM Sandbox and Publishes Implementation Programme. Unmanned Airspace. https://www.unmannedairspace.info/uncategorized/brazils-decea-launches-brazils-utm-sandbox-and-published-implementation-programme [Accessed on July 30, 2025].
[13]EASA, 2017. Drones and air mobility basics explained. https://www.easa.europa.eu/en/domains/drones-air-mobility/drones-air-mobility-landscape/basics-explained [Accessed on July 30, 2025].
[14]FAA, 2023a. Advanced Air Mobility (AAM) Implementation Plan. https://www.faa.gov/sites/faa.gov/files/AAM-I28-Implementation-Plan.pdf [Accessed on July 30, 2025].
[15]FAA, 2023b. Urban Air Mobility (UAM) Concept of Operations. https://www.faa.gov/sites/faa.gov/files/Urban-Air-Mobility-Concept-of-Operations-2.0.pdf [Accessed on July 30, 2025].
[16]Ferreira DM, Rosa LP, Ribeiro VF, et al., 2014. Genetic algorithms and game theory for airport departure decision making: GeDMAN and CoDMAN. Proc 9th Int Conf on Knowledge Management in Organizations, p.3-14.
[17]Garcia CP, Weigang L, Hirata NST, et al., 2023. ISUAM: intelligent and safe UAM with deep reinforcement learning. Proc 29th Int Conf on Parallel and Distributed Systems, p.378-383.
[18]Gong YW, Fan JC, Zhang RC, et al., 2025. Safe and economical UAV trajectory planning in low-altitude airspace: a hybrid DRL-LLM approach with compliance awareness.
[19]Goodrich KH, Theodore CR, 2021. Description of the NASA urban air mobility maturity level (UML) scale. Proc AIAA Scitech Forum, Article 1627.
[20]Halder S, Ghosal A, Conti M, 2023. Dynamic super round-based distributed task scheduling for UAV networks. IEEE Trans Wirel Commun, 22(2):1014-1028.
[21]ICAO, 2015. Manual on Remotely Piloted Aircraft System (RPAS). International Civil Aviation Organization, Montrèal.
[22]Jasper FNH, Nunes AF, 2022. Soberania e controle do espaço aéreo: uma visão brasileira. Rev Tempo Mundo, (28):345-366 (in Portuguese).
[23]Jiang YH, Li XY, Zhu GX, et al., 2023. 6G non-terrestrial networks enabled low-altitude economy: opportunities and challenges.
[24]Korringa M, Snyder P, Ullrich M, et al., 2025. Optimal air corridor design for efficient integration of AAM vehicles into the NAS. Proc Integrated Communications, Navigation and Surveillance Conf, p.1-7.
[25]Lascara B, Spencer T, DeGarmo M, et al., 2018. Urban Air Mobility Landscape Report. McLean, VA, USA. https://www.mitre.org/publications/technical-papers/urban-air-mobility-landscape-report
[26]Lavezzi G, Guye K, Cichella V, et al., 2023. Comparative analysis of nonlinear programming solvers: performance evaluation, benchmarking, and multi-UAV optimal path planning. Drones, 7(8):487.
[27]Leite GMC, Marcelino CG, Wanner EF, et al., 2021. Pattern classification applying neighbourhood component analysis and swarm evolutionary algorithms: a coupled methodology. Proc IEEE Congress on Evolutionary Computation, p.319-326.
[28]Liang M, Li WG, Delahaye D, et al., 2019. Policy optimization in automated point merge trajectory planning: an artificial intelligence-based approach. Proc 38th Digital Avionics Systems Conf, p.1-8.
[29]Liao XH, Xu CC, Ye HP, 2024. Benefits and challenges of constructing low-altitude air route network infrastructure for developing low-altitude economy. Bull Chin Acad Sci, 39(11):1966-1981 (in Chinese).
[30]Liu CL, Layland JW, 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM, 20(1):46-61.
[31]Liu S, Liu MM, 2025. Research on the security risk governance roadmap in low-altitude economic field based on the economic externality theory. Eng Proc, 80(1):14.
[32]Maia JA, Weigang L, Stenzel E, et al., 2025. Model of a corridor for urban mobility of unmanned aircraft in the “Eixão” of Brasília. Proc Brazilian Air Transport Symp (in Portuguese).
[33]Moon H, Park J, Kim J, 2024. Development of decision support systems for regional air mobility (RAM) operations in South Korea: dynamic corridor network generation. Proc AIAA Aviation Forum and Ascend, Article 4255.
[34]Moraga Á, de Curtò J, de Zarzà I, et al., 2025. AI-driven UAV and IoT traffic optimization: large language models for congestion and emission reduction in smart cities. Drones, 9(4):248.
[35]Muna SI, Mukherjee S, Namuduri K, et al., 2021. Air corridors: concept, design, simulation, and rules of engagement. Sensors, 21(22):7536.
[36]Neufert E, 2013. Neufert: Arte de Proyectar en Arquitectura. Gustavo Gili, Barcelona (in French).
[37]Pagotto LG, Rodrigues J, Henrique FH, et al., 2021. Analysis of variance and means tests: a study applied in experiments with cotton varieties and citrumelo selections. Brazilian Appl Sci Revi, 5(3):1287-1296.
[38]Pruekprasert S, Nakadai S, 2024. Enhancing safety in UAM corridors: a self-separation scheme utilizing estimated arrival times at constraint waypoints. Proc Int Workshop on ATM/CNS, p.187.
[39]Roberge V, Tarbouchi M, Labonte G, 2013. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Ind Inform, 9(1):132-141.
[40]Sadik AR, Ashfaq M, Mäkitalo N, et al., 2025. Urban air mobility as a system of systems: an LLM-enhanced holonic approach. Proc 20th Annual System of Systems Engineering Conf, p.1-7.
[41]Turchetti JV, Murça MCR, 2024. Analysis and prediction of airspace availability for urban air mobility operations in the Sao Paulo Metropolitan Region. Transportes, 32(1):1-20.
[42]van Nguyen T, 2020. Dynamic delegated corridors and 4D required navigation performance for urban air mobility (UAM) airspace integration. J Aviat Aerosp Educ Res, 29(2):57-72.
[43]Varun Kumar KA, Priyadarshini R, Kathik PC, et al., 2023. Self-co-ordination algorithm (SCA) for multi-UAV systems using fair scheduling queue. Sens Rev, 43(4):233-242.
[44]Verma S, Dulchinos V, Dan Wood R, et al., 2022. Design and analysis of corridors for UAM operations. Proc IEEE/AIAA 41st Digital Avionics Systems Conf, p.1-10.
[45]Wang BH, Wang DB, Ali ZA, et al., 2019. An overview of various kinds of wind effects on unmanned aerial vehicle. Meas Contr, 52(7-8):731-739.
[46]Xu L, Cao XB, Du WB, et al., 2025. Robust path planning for multiple UAVs considering position uncertainty. Chin J Electron, 34(4):1120-1135.
[47]Yang JL, Yang JF, Liu DX, et al., 2024. Competition pattern and coping strategies in near space. Strat Study CAE, 26(5):137-145 (in Chinese).
[48]Zou LY, Munir S, Hassan SS, et al., 2024. Imbalance cost-aware energy scheduling for prosumers towards UAM charging: a matching and multi-agent DRL approach. IEEE Trans Veh Technol, 73(3):3404-3420.
Open peer comments: Debate/Discuss/Question/Opinion
<1>