
CLC number:
On-line Access: 2025-11-05
Received: 2025-02-05
Revision Accepted: 2025-03-18
Crosschecked: 0000-00-00
Cited: 0
Clicked: 3
Chonglei Hao (???), Binhong Dou (???), Shenghao Yang (???), Haochen Wang (???), Lei Zhang (??), Bing Li (??), Qing Cao (??), Huayong Yang (???), Dong Han (??) & Fuzhou Niu (???) . Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation[J]. Journal of Zhejiang University Science D, 2025, 8(6): 1024-1034.
@article{title="Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation",
author="Chonglei Hao (???), Binhong Dou (???), Shenghao Yang (???), Haochen Wang (???), Lei Zhang (??), Bing Li (??), Qing Cao (??), Huayong Yang (???), Dong Han (??) & Fuzhou Niu (???) ",
journal="Journal of Zhejiang University Science D",
volume="8",
number="6",
pages="1024-1034",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/bdm.2500047"
}
%0 Journal Article
%T Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation
%A Chonglei Hao (???)
%A Binhong Dou (???)
%A Shenghao Yang (???)
%A Haochen Wang (???)
%A Lei Zhang (??)
%A Bing Li (??)
%A Qing Cao (??)
%A Huayong Yang (???)
%A Dong Han (??) & Fuzhou Niu (???)
%J Journal of Zhejiang University SCIENCE D
%V 8
%N 6
%P 1024-1034
%@ 1869-1951
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/bdm.2500047
TY - JOUR
T1 - Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquidair interface navigation
A1 - Chonglei Hao (???)
A1 - Binhong Dou (???)
A1 - Shenghao Yang (???)
A1 - Haochen Wang (???)
A1 - Lei Zhang (??)
A1 - Bing Li (??)
A1 - Qing Cao (??)
A1 - Huayong Yang (???)
A1 - Dong Han (??) & Fuzhou Niu (???)
J0 - Journal of Zhejiang University Science D
VL - 8
IS - 6
SP - 1024
EP - 1034
%@ 1869-1951
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/bdm.2500047
Abstract: Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications; however, they struggle
to achieve efficient locomotion across various interfaces. In this study, we propose a magnetic soft robot that integrates two
distinct bio-inspired locomotion modes for enhanced interface navigation. Inspired by water striders superhydrophobic legs
and the meniscus climbing behavior of Pyrrhalta nymphaeae larvae, we developed a rectangular sheet-based robot with hy
drophobic surface treatment and novel control strategies. The proposed robot implements two locomotion modes: a bipedal
peristaltic locomotion mode (BPLM) and a single-region contact-vibration locomotion mode (SCLM). The BPLM achieves
stable movement at 20 mm/s through coordinated frontrear contact points, whereas the SCLM reaches an ultrafast speed of
52 mm/s by optimizing surface tension interactions. The proposed robot demonstrates precise trajectory control with mini
mal deviations and successfully navigates confined spaces while manipulating objects. Theoretical analysis and experimental
validation demonstrate that the integration of triangular wave control signals and steady-state components enables smooth
transitions between locomotion modes. This study presents a new paradigm for bio-inspired design of small-scale robots and
demonstrates the potential for medical applications requiring precise navigation across multiple terrains.
Open peer comments: Debate/Discuss/Question/Opinion
<1>