CLC number: O343.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 9
Clicked: 5711
ZHANG Tao, LIU Tu-guang, ZHAO Yao, LUO Jia-zhi. Nonlinear dynamic buckling of stiffened plates under in-plane impact load[J]. Journal of Zhejiang University Science A, 2004, 5(5): 609-617.
@article{title="Nonlinear dynamic buckling of stiffened plates under in-plane impact load",
author="ZHANG Tao, LIU Tu-guang, ZHAO Yao, LUO Jia-zhi",
journal="Journal of Zhejiang University Science A",
volume="5",
number="5",
pages="609-617",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0609"
}
%0 Journal Article
%T Nonlinear dynamic buckling of stiffened plates under in-plane impact load
%A ZHANG Tao
%A LIU Tu-guang
%A ZHAO Yao
%A LUO Jia-zhi
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 5
%P 609-617
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0609
TY - JOUR
T1 - Nonlinear dynamic buckling of stiffened plates under in-plane impact load
A1 - ZHANG Tao
A1 - LIU Tu-guang
A1 - ZHAO Yao
A1 - LUO Jia-zhi
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 5
SP - 609
EP - 617
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0609
Abstract: This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.
[1] Ari-Gur, J., Singer, J., Weller, T., 1981. Dynamic buckling of plates under longitudinal impact.Israel J Techno,19:57-64.
[2] Cui, S.J., Cheong, H.K., Hao, H., 1999. Experimental study of dynamic buckling of plates under fluid-solid slamming.Int J. Impact Engng, (22):675-691.
[3] Cui, S.J., Cheong, H.K., Hao, H., 2001. Numerical analysis of dynamic buckling of rectangular plates subjected to intermediate-velocity impact.Int J. Impact Engng, (25):147-167.
[4] Eivind, S., 1989. Elastic buckling and postbuckling of eccentrically stiffened plates.Int. J. Solids Structures,25(7):751-768.
[5] Han, Q., Zhang, S.Y., Yang, G.T., 1998. Advances in research for static and dynamic buckling of structure.Advances in mechanics,25(3):349-360 (in Chinese).
[6] Li, S.Q., Zhang, Q.J., Zheng, J.J., 1993. Experimental investigation on dynamic buckling and plastic collapsing of rectangular plates subject to solid-fluid in-plane impact.Acta Mechanica Sinica25(2):249-255 (in Chinese).
[7] Petry, D., Fahlbusch, G., 2000. Dynamic buckling of thin isotropic plates subjected to in-plane impact.Thin-Walled Structures, (38):267-283.
[8] Wang, D.Y., 1997. Axial impact buckling of a column subject to lateral static load.Vibration & shock,16(1):35-37 (in Chinese).
[9] Weller, T., Abramovich, H., Yaffe, R., 1989. Dynamics of beams and plates subjected to axial impact.Comp and Struct,32(3-4):835-851.
[10] Zhang, Q.J., Li, S.Q., Zheng, J.J., 1992. Dynamic response, buckling and collapsing of elastic-plastic straight col-umns under axial solid-fluid slamming compression.Int. J. Solids & Structures, (29):381-397.
[11] Zhang, Q.J., Liu, T.G., Zheng, J.J., Li, S.Q., 1993. Advances in research on dynamic buckling of structures.Advances in mechanics,23(4):530-538 (in Chinese).
[12] Zizicas, G.A., 1952. Dynamic buckling of thin plates.Trans ASME,74(7):1257-68.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Mouhat@Ouadia<ouadie1986@hotmail.com>
2014-11-22 17:33:37
Many thanks
ouadie@1234<ouadie1986@hotmail.com>
2014-07-20 23:09:35
thank you for paper
rasha@mohammed<mechanicalflower99@yahoo.com>
2014-03-22 17:00:50
i want this paper