CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 11105
CAO Feng-wen, LU Ren-quan, SU Hong-ye, CHU Jian. Robust H∞ output feedback control for a class of uncertain Lur'e systems with time-delays[J]. Journal of Zhejiang University Science A, 2004, 5(9): 1114-1123.
@article{title="Robust H∞ output feedback control for a class of uncertain Lur'e systems with time-delays",
author="CAO Feng-wen, LU Ren-quan, SU Hong-ye, CHU Jian",
journal="Journal of Zhejiang University Science A",
volume="5",
number="9",
pages="1114-1123",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1114"
}
%0 Journal Article
%T Robust H∞ output feedback control for a class of uncertain Lur'e systems with time-delays
%A CAO Feng-wen
%A LU Ren-quan
%A SU Hong-ye
%A CHU Jian
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 9
%P 1114-1123
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1114
TY - JOUR
T1 - Robust H∞ output feedback control for a class of uncertain Lur'e systems with time-delays
A1 - CAO Feng-wen
A1 - LU Ren-quan
A1 - SU Hong-ye
A1 - CHU Jian
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 9
SP - 1114
EP - 1123
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1114
Abstract: In this work, the analysis of robust stability and design of robust H∞ output feedback controllers for a class of Lur'e systems with both time-delays and parameter uncertainties were studied. A robust H∞ output feedback controller based on Linear Matrix Inequalities (LMIs) was developed to guarantee the robust stability and H∞ performance of the resultant closed-loop system. The presented design approach is based on the application of descriptor model transformation and Park’s inequality for the bounding of cross terms and is expected to be less conservative compared to reported design methods. Finally, illustrative examples are advanced to demonstrate the superiority of the obtained method.
[1] Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA.
[2] Choi, H.H., Chung, M.J., 1997. An LMI approach to H( controller design for linear time-delay systems. Automatica, 33(4):737-739.
[3] Fridman, E., 2001. New Lyapurov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett., 39(2):309-319.
[4] Fridman, E., Shaked, U., 2001. A new H( filter design for linear time-delay systems. IEEE Trans. Signal Processing, 49(11):2893-2843.
[5] Fridman, E., Shaked, U., Xie, L., 2003. Robust H( filtering of linear systems with time-varying delay. IEEE Trans. Automat. Control, 48(1):159-165.
[6] Fu, M., de Souza, C.E., Xie, L., 1992. H( estimation for uncertain systems. Int. J. Robust Nonlinear Control, 2(1):87-105.
[7] Guo, L., 2002. H( output feedback control for delay systems with nonlinear and parametric uncertainties. IEE Proc. Control Theory Appl., 149(1):226-236.
[8] Hale, J.K., 1977. Theory of Functional Differential Equation. Springer-Verlag, New York.
[9] Hale, J.K., 1993. Introduction to Functional Differential Equations. Springer-Verlag, New York.
[10] Su, H.Y., Wang, J.C., Yu, L., Chu, J., 1997. Robust Memoryless H( Controller Design for A Class of Time-varying Uncertain Linear Time-delay Systems. Proc. ACC’97, Albuquerque NM, USA, p.3662-3663.
[11] Yu, L., Chen, G.D., 1997. Memoryless stabilization of uncertain linear systems with time-varying state and control delays. Advan. Mod. Ana., Series C, 178(1):27-34.
[12] Yu, L., Chu, J., 1999. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 35(6):1155-1160.
Open peer comments: Debate/Discuss/Question/Opinion
<1>