Full Text:   <3403>

CLC number: TU470

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 8003

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.2 P.132-140

http://doi.org/10.1631/jzus.2005.A0132


Analysis modeling for plate buckling load of vibration test


Author(s):  Wen-pei Sung1, Cheng-I Lin2, Ming-hsiang Shih3, Cheer-germ Go4

Affiliation(s):  1. Department of Landscape Design and Management, National Chin-Yi Institute of Technology, Taiwan 41111, China; more

Corresponding email(s):   sung809@chinyi.ncit.edu.tw

Key Words:  Energy equivalence, Buckling load, Monte Carlo method


SUNG Wen-pei, LIN Cheng-I, SHIH Ming-hsiang, GO Cheer-germ. Analysis modeling for plate buckling load of vibration test[J]. Journal of Zhejiang University Science A, 2005, 6(2): 132-140.

@article{title="Analysis modeling for plate buckling load of vibration test",
author="SUNG Wen-pei, LIN Cheng-I, SHIH Ming-hsiang, GO Cheer-germ",
journal="Journal of Zhejiang University Science A",
volume="6",
number="2",
pages="132-140",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0132"
}

%0 Journal Article
%T Analysis modeling for plate buckling load of vibration test
%A SUNG Wen-pei
%A LIN Cheng-I
%A SHIH Ming-hsiang
%A GO Cheer-germ
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 2
%P 132-140
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0132

TY - JOUR
T1 - Analysis modeling for plate buckling load of vibration test
A1 - SUNG Wen-pei
A1 - LIN Cheng-I
A1 - SHIH Ming-hsiang
A1 - GO Cheer-germ
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 2
SP - 132
EP - 140
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0132


Abstract: 
In view of the recent technological development, the pursuit of safe high-precision structural designs has been the goal of most structural designers. To bridge the gap between the construction theories and the actual construction techniques, safety factors are adopted for designing the strength loading of structural members. If safety factors are too conservative, the extra building materials necessary will result in high construction cost. Thus, there has been a tendency in the construction field to derive a precise buckling load analysis model of member in order to establish accurate safety factors. A numerical analysis model, using modal analysis to acquire the dynamic function calculated by dynamic parameter to get the buckling load of member, is proposed in this paper. The fixed and simple supports around the circular plate are analyzed by this proposed method. And then, the monte Carlo method and the normal distribution method are used for random sampling and measuring errors of numerical simulation respectively. The analysis results indicated that this proposed method only needs to apply modal parameters of 7×7 test points to obtain a theoretical value of buckling load. Moreover, the analysis method of inequality-distant test points produces better analysis results than the other methods.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Dym, C.L., 1974. Stability Theory and Its Applications to Structural Mechanics, Noordhoff Publishing Company, Groningen,:

[2] Go, C.G., Lin, Y.S., Khor, E.H., 1997. Experimental determination of the buckling load of a straight structural member by using dynamic parameters. Journal of Sound and Vibration, 205(3):257-267. 

[3] Lurie, R., 1952. Lateral vibrations as related to structural stability. Journal of Applied Mechanic, 19(2):195-203. 

[4] Meirovitch, L., 1967. Analytical Methods In Vibrations. , The Macmillan Company, :

[5] Richard, L.B., Faires, J.D., 1989. Numerical Analysis, Fourth Edition, PWS-KENT Publishing Company, Boston, U.S.A,:

[6] Segall, A., Baruch, M., 1980. A nondestructive dynamic method for determination of the critical load of elastic columns. Experimental Mechanics, 20(8):285-288. 

[7] Segall, A., Springer, G.S., 1986. A dynamic method for measuring the critical loads of elastic flat plate. Experimental Mechanics, 26:354-359. 

[8] Sweet, A.L., Genin, J., 1971. Identification of a model for predicting elastic buckling. Journal Sound Vibration and Vibration, 14(3):317-324. 

[9] Sweet, A.L., Genin, J., Mlakar, P.F., 1976. Vibratory identification of beam boundary condition. Journal of Dynamic Systems, Measurement, and Control, 98:387-394. 

[10] Sweet, A.L., Genin, J., Mlakar, P.F., 1977. Determination of column buckling criteria using vibration data. Experimental Mechanics, 17:385-391. 

[11] Timoshenko, S.P., Gere, J.M., 1997. Mechanics of Material, Fourth Edition, PWS Publishing Company, Boston, U.S.A,:


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE