CLC number: O343.2; O343.8; TB39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 6
Clicked: 6426
XU Xin-sheng, GU Qian, LEUNG Andrew Y. T., ZHENG Jian-jun. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media[J]. Journal of Zhejiang University Science A, 2005, 6(9): 922-927.
@article{title="A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media",
author="XU Xin-sheng, GU Qian, LEUNG Andrew Y. T., ZHENG Jian-jun",
journal="Journal of Zhejiang University Science A",
volume="6",
number="9",
pages="922-927",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0922"
}
%0 Journal Article
%T A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media
%A XU Xin-sheng
%A GU Qian
%A LEUNG Andrew Y. T.
%A ZHENG Jian-jun
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 9
%P 922-927
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0922
TY - JOUR
T1 - A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media
A1 - XU Xin-sheng
A1 - GU Qian
A1 - LEUNG Andrew Y. T.
A1 - ZHENG Jian-jun
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 9
SP - 922
EP - 927
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0922
Abstract: This paper reports establishment of a symplectic system and introduces a 3D sub-symplectic structure for transversely isotropic piezoelectric media. A complete space of eigensolutions is obtained directly. Thus all solutions of the problem are reduced to finding eigenvalues and eigensolutions, which include zero-eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian matrix and non-zero-eigenvalue solutions. The classical solutions are described by zero-eigensolutions and non-zero-eigensolutions show localized solutions. Numerical results show some rules of non-zero-eigenvalue and their eigensolutions.
[1] Chen, W.Q., 1999. On the application of potential theory in piezoelasticity. J. Appl. Mech., 66:808-810.
[2] Ding, H.J., Chen, W.Q., 2001. Three Dimensional Problems of Piezoelectricity. Nova Science Publishers, Inc., Huntington, New York.
[3] Ding, H.J., Chen, B., Liang, J., 1996. General solutions for coupled equations for piezoelectric media. Int. J. Struct., 33:2283-2298.
[4] Ding, H.J., Guo, F.L., Hou, P.F., Zou, D.Q., 2000. On the equilibrium of piezoelectric bodies of revolution. Int. J. Solids Structures, 37:1293-1326.
[5] Ding, H.J., Xu, R.Q., Chen, W.Q., 2002. Free vibration of transversely isotropic piezoelectric circular cylindrical panels. Int. J. Mech. Sci., 44:191-206.
[6] Dunn, M.L., Wienecke, H.A., 1996. Green’s functions for transversely isotropic piezoelectric solids. Int. J. Solids Structures, 33(30):4571-4581.
[7] Leung, A.Y.T., Xu, X.S., 2005. A symplectic method for the exact homogeneous solutions of two-dimensional transversely isotropic piezoelectric media. J. Eng. Mech. (to be published).
[8] Zhong, W.X., 1995. A New Systematic Methodology for Theory of Elasticity. Dalian University of Technology Press, Dalian (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>