CLC number: R737.31
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 20
Clicked: 8221
YU Jie-kai, ZHENG Shu, TANG Yong, LI Li. An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer[J]. Journal of Zhejiang University Science B, 2005, 6(4): 227-231.
@article{title="An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer",
author="YU Jie-kai, ZHENG Shu, TANG Yong, LI Li",
journal="Journal of Zhejiang University Science B",
volume="6",
number="4",
pages="227-231",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.B0227"
}
%0 Journal Article
%T An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer
%A YU Jie-kai
%A ZHENG Shu
%A TANG Yong
%A LI Li
%J Journal of Zhejiang University SCIENCE B
%V 6
%N 4
%P 227-231
%@ 1673-1581
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.B0227
TY - JOUR
T1 - An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer
A1 - YU Jie-kai
A1 - ZHENG Shu
A1 - TANG Yong
A1 - LI Li
J0 - Journal of Zhejiang University Science B
VL - 6
IS - 4
SP - 227
EP - 231
%@ 1673-1581
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.B0227
Abstract: Objective: To find new potential biomarkers and establish the patterns for the detection of ovarian cancer. Methods: Sixty one serum samples including 32 ovarian cancer patients and 29 healthy people were detected by surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). The protein fingerprint data were analyzed by bioinformatics tools. Ten folds cross-validation support vector machine (SVM) was used to establish the diagnostic pattern. Results: Five potential biomarkers were found (2085 Da, 5881 Da, 7564 Da, 9422 Da, 6044 Da), combined with which the diagnostic pattern separated the ovarian cancer from the healthy samples with a sensitivity of 96.7%, a specificity of 96.7% and a positive predictive value of 96.7%. Conclusions: The combination of SELDI with bioinformatics tools could find new biomarkers and establish patterns with high sensitivity and specificity for the detection of ovarian cancer.
[1] Adam, B., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmens, O.J., Schellhammer, P.F., Yasui, Y., Ziding, F., Wright, G., 2002. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res, 62(13):3609-3614.
[2] Bast, R.C.Jr., Xu, F.J., Yu, Y.H., Barnhill, S., Zhang, Z., Mills, G.B., 1998. CA125: the past and the future. Int J Biol Markers, 13(4):179-187.
[3] Chen, Y.D., Zheng, S., Yu, J.K., Hu, X., 2004. Application of serum protein pattern model in diagnosis of colorectal cancer. Zhonghua Zhong Liu Za Zhi, 26(7):417-420 (in Chinese).
[4] Hu, Y., Zhang, S.Z., Yu, J.K., Liu, J., Zheng, S., 2004. Detection and evaluation of serum proteomic patterns by SELDI-TOF-MS in breast cancer. Zhong Hua Jian Yan Zha Zhi, 27(10):646-648 (in Chinese).
[5] Li, J., Zhang, Z., Rosenzweig, J., Wang, Y.Y., Chan, D.W., 2002. Proteomics and bioinformatics approached for identification of serum biomarkers to detect breast cancer. Clin Chem, 48(8):1296-1304.
[6] Mok, S.C., Chao, J., Skates, S., Wong, K., Yiu, G.K., Muto, M.G., Berkowitz, R.S., Cramer, D.W., 2001. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst, 93(19):1458-1464.
[7] Petricoin, E.F., Liotta, L.A., 2004. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol, 15(1):24-30.
[8] Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A., 2002. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359(9306):572-577.
[9] Poon, T.C.W., Yip, T.T., Chan, A.T.C., Yip, C., Yip, V., Mok, T.S.K., Lee, C.C.Y., Leung, T.W.T., Ho, S.K.W., Johnson, P.J., 2002. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem, 49(5):752-760.
[10] Rai, A.J., Zhang, Z., Rosenzweig, J., Shih, Ie.M., Pham, T., Fung, E.T., Sokoll, L.J., Chan, D.D., 2002. Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med, 126(12):1518-1526.
[11] Srinivas, P.R., Verma, M., Zhao, Y., Srivastava, S., Clark, R.A., Tockman, M.S., 2002. Proteomics for cancer biomarker discovery. Clin. Chem, 48(8):1160-1169.
[12] Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer Verlag, New York.
[13] Wiesner, A., 2004. Detection of tumor markers with ProteinChip technology. Curr Pharm Biotechnol, 51:45-67.
[14] Ye, B., Cramer, D.W., Skates, S.J., Gygi, S.P., Pratomo, V., Fu, L., Horick, N.K., Licklider, L.J., Schorge, J.O., Berkowitz, R.S., Mok, S.C., 2003. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res, 9(8):2904-2915.
[15] Yu, J.K., Chen, Y.D., Zheng, S., 2004. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J Gastroenterol, 10(21):3127-3131.
[16] Zhang, Z., Bast, R.C.Jr, Yu, Y., Li J., Sokoll, L.J., Rai, A.J., Rosenzweig, J.M., Cameron, B., Wang, Y.Y., Meng, X.Y., Berchuck, A., Van Haaften-Day, C., Hacker, N.F., de Bruijn, H.W., van der Zee, A.G., Jacobs, I.J., Fung, E.T., Chan, D.W., 2004. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res, 64(16):5882-5890.
Open peer comments: Debate/Discuss/Question/Opinion
<1>