CLC number: TN919.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 3917
Hillestad Odd Inge, Jetlund Ola, Perkis Andrew. RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation[J]. Journal of Zhejiang University Science A, 2006, 7(100): 19-26.
@article{title="RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation",
author="Hillestad Odd Inge, Jetlund Ola, Perkis Andrew",
journal="Journal of Zhejiang University Science A",
volume="7",
number="100",
pages="19-26",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.AS0019"
}
%0 Journal Article
%T RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation
%A Hillestad Odd Inge
%A Jetlund Ola
%A Perkis Andrew
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 100
%P 19-26
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.AS0019
TY - JOUR
T1 - RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation
A1 - Hillestad Odd Inge
A1 - Jetlund Ola
A1 - Perkis Andrew
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 100
SP - 19
EP - 26
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.AS0019
Abstract: In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) h.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an h.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world h.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the h.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.
[1] Calafate, C.M., Malumbres, M.P., Manconi, P., 2004. Performance of H.264 Compressed Video Streams over 802.11b Based Manets. 24th International Conference on Distributed Computing Systems Workshop, p.776-781.
[2] DCI & ASC (Digital Cinema Initiatives and the American Society of Cinematographers), 2004. StEM Mini-movie Access Procedyre. Available at http://www.dcimovies. com/.
[3] Hallbach, T., Olsen, S., 2004. Error Robustness Evaluation of H.264/MPEG-4 AVC. Proceedings of the International Conference on Visual Communications and Image Processing (VCIP).
[4] Hillestad, O.I., Libak, B., Perkis, A., 2005. Performance Evaluation of Multimedia Services over IP Networks. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Amsterdam, the Netherlands.
[5] ITU-T and ISO/IEC JTC-1, 2003. Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 part 10) AVC.
[6] Lin, D., Morris, R., 1997. Dynamics of Early Random Detection. ACM SIGCOMM’97. Applications, Technologies, Architectures and Protocols for Computer Communication. Cannes, France.
[7] Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammar, T., Wedi, T., 2004. Video coding with H.264/AVC: Tools, performance and complexity. IEEE Circuits and Systems Magazine, 4(1):7-28.
[8] Roth, G., Sjberg, R., Liebl, G., Stockhammar, T., Varsa, V., Karczewicz, M., 2001. Common Test Conditions for RTP/IP over 3GPP/3GPP2. ITU-T SG16, VCEG-M77.doc.
[9] Schwarz, H., Marpe, D., Wiegand, T., 2005. Hierarchical B Pictures. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG Document JVT-PO14.
[10] Stockhammar, T., Hannuksela, M.H., Wiegand, T., 2003. H.264/AVC in wireless environments. IEEE Trans. on Circuits and Systems for Video Technology, 13(7): 657-673.
[11] Sullivan, G.J., Wiegand, T., 2004. Video compression—from concepts to the H.264/AVC standard. Proceedings of the IEEE, 86(5):18-31.
[12] Sullivan, G.J., Topiwala, P., Luthra, A., 2004. The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extension. SPIE Conference on Applications of Digital Image Processing, XXVII.
[13] Wang, Y.K., Hannuksela, M.M., Varsa, V., 2002. The Error Concealment Feature in the H.26l Test Model. Proceedings of the IEEE International Conference on Image Processing, 2:729-732.
[14] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Processing, 13(4):600-612.
[15] Wenger, S., 2001. Common Test Conditions for Wire-Line Low Delay IP/UDP/RTP Packet Loss Resilient Testing. ITU-T SG16, VCEG-N79r1.doc.
[16] Wenger, S., 2003a. H.264/AVC over IP. IEEE Trans. on Circuits and Systems for Video Technology, 13(7):645-656.
[17] Wenger, S., 2003b. Error Patterns for Internet Experiments. ITU-T VCEG, Document Q15-I16r1.
[18] Wenger, S., Hannuksela, M.M., Stockhammar, T., Westerlund, M., Singer, D., 2005. RTP Payload Format for H.264 Video. IETF, Request for Comments, RFC 3984.
[19] Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A., 2003. Overview of the H.264/AVC video coding standard. IEEE Trans. on Circuits and Systems for Video Technology, 560(576):282-300.
[20] Yajnik, M., Moon, S., Kurose, J., Towsley, D., 1999. Measurement and Modelling of the Temporal Dependence of Packet Loss. Proceedings of INFOCOM’99. Eighteenth Annual Conference of the IEEE Computer and Communications Societies. New York, 1:345-352.
Open peer comments: Debate/Discuss/Question/Opinion
<1>