CLC number: TN919.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5663
LI Ji-liang, FANG Xiang-zhong, HOU Jun. Mean shift based log-Gabor wavelet image coding[J]. Journal of Zhejiang University Science A, 2007, 8(4): 620-624.
@article{title="Mean shift based log-Gabor wavelet image coding",
author="LI Ji-liang, FANG Xiang-zhong, HOU Jun",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="620-624",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0620"
}
%0 Journal Article
%T Mean shift based log-Gabor wavelet image coding
%A LI Ji-liang
%A FANG Xiang-zhong
%A HOU Jun
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 620-624
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0620
TY - JOUR
T1 - Mean shift based log-Gabor wavelet image coding
A1 - LI Ji-liang
A1 - FANG Xiang-zhong
A1 - HOU Jun
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 620
EP - 624
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0620
Abstract: In this paper, we propose a sparse overcomplete image approximation method based on the ideas of overcomplete log-Gabor wavelet, mean shift and energy concentration. The proposed approximation method selects the necessary wavelet coefficients with a mean shift based algorithm, and concentrates energy on the selected coefficients. It can sparsely approximate the original image, and converges faster than the existing local competition based method. Then, we propose a new compression scheme based on the above approximation method. The scheme has compression performance similar to JPEG 2000. The images decoded with the proposed compression scheme appear more pleasant to the human eyes than those with JPEG 2000.
[1] Cheng, Y., 1995. Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(8):790-799.
[2] Comaniciu, D., Meer, P., 2002. Mean shift: a robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(5):603-619.
[3] Field, D.J., 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Amer. A, 4(12):2379-2394.
[4] Fischer, S., Cristóbal, G., Redondo, R., 2006. Sparse overcomplete Gabor wavelet representation based on local competitions. IEEE Trans. on Image Processing, 15(2):265-272.
[5] ISO/IEC N1878, 2000. JPEG2000 Verification Model 8.5.
[6] Jiang, Y.X., Zhong, Z.F., Wang, L.W., 2005. A Wavelet Coding Preprocessing Algorithm Based on Bayesian Estimation for Image Compression. Proc. 4th International Conference on Machine Learning and Cybernetics. Guangzhou, p.5467-5472.
[7] Kreutz-Delgado, K., 2003. Dictionary learning algorithms for sparse representation. Neural Computation, 15(2):349-396.
[8] Legge, G., Foley, J., 1980. Contrast masking in human vision. J. Math. Imaging and Vision, 12:1458-1471.
[9] Le Pennec, E., Mallat, S., 2005. Sparse geometric image representations with bandelets. IEEE Trans. on Image Processing, 14(4):423-438.
[10] Mallat, S.G., Zhang, Z., 1993. Matching pursuit in a time-frequency dictionary. IEEE Trans. on Signal Processing, 41(12):3397-3415.
[11] Olshausen, B.A., Field, D.J., 1997. Sparse coding with an overcomplete basis set: a strategy employed by Vl? Vision Research, 37:3311-3325.
[12] Pece, A.E.C., 2002. The problem of sparse image coding. J. Math. Imaging and Vision, 17:89-108.
[13] Peotta, L., Granai, L., Vandergheynst, P., 2006. Image compression using an edge adapted redundant dictionary and wavelets. Signal Processing, 86:444-456.
[14] Wakin, M.B., Romberg, J.K., Choi, H., Baraniuk, R.G., 2006. Wavelet-domain approximation and compression of piecewise smooth images. IEEE Trans. on Image Processing, 15(5):1071-1087.
[15] Zeng, W., Daly, S., Lei, S., 2000. Point-Wise Extended Visual Masking for JPEG-2000 Image Compression. Proc. IEEE International Conference on Image Processing. Vancouver, CA, 1:657-660.
[16] Zhang, L., Bao, P., Wu, X.L., 2005. Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Trans. on Circuits and Systems for Video Technology, 15(4):469-481.
Open peer comments: Debate/Discuss/Question/Opinion
<1>