Full Text:   <3726>

CLC number: TP37; TP31

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 13

Clicked: 6912

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.12 P.1953-1961

http://doi.org/10.1631/jzus.2007.A1953


Support Vector Machine active learning for 3D model retrieval


Author(s):  LENG Biao, QIN Zheng, LI Li-qun

Affiliation(s):  Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   lengb04@mails.tsinghua.edu.cn

Key Words:  3D model retrieval, Shape descriptor, Relevance feedback, Support Vector Machine (SVM), Active learning


LENG Biao, QIN Zheng, LI Li-qun. Support Vector Machine active learning for 3D model retrieval[J]. Journal of Zhejiang University Science A, 2007, 8(12): 1953-1961.

@article{title="Support Vector Machine active learning for 3D model retrieval",
author="LENG Biao, QIN Zheng, LI Li-qun",
journal="Journal of Zhejiang University Science A",
volume="8",
number="12",
pages="1953-1961",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1953"
}

%0 Journal Article
%T Support Vector Machine active learning for 3D model retrieval
%A LENG Biao
%A QIN Zheng
%A LI Li-qun
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 12
%P 1953-1961
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1953

TY - JOUR
T1 - Support Vector Machine active learning for 3D model retrieval
A1 - LENG Biao
A1 - QIN Zheng
A1 - LI Li-qun
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 12
SP - 1953
EP - 1961
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1953


Abstract: 
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user’s semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Ansary, T.F., Daoudi, M., Vandeborre, J.P., 2007. A Bayesian 3-D search engine using adaptive views clustering. IEEE Trans. on Multimedia, 9(1):78-88.

[2] Atmosukarto, I., Leow, W.K., Huang, Z.Y., 2005. Feature Combination and Relevance Feedback for 3D Model Retrieval. Proc. 11th Int. Multimedia Modeling Conf. Melbourne, Australia, p.334-339.

[3] Bang, H.Y., Chen, T., 2002. Feature Space Warping: An Approach to Relevance Feedback. IEEE Int. Conf. on Image Processing. Rochester, New York, USA, p.22-25.

[4] Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167.

[5] Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranic, D.V., 2005. Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4):345-387.

[6] Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M., 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum, 22(3):223-232.

[7] Daras, P., Zarpalas, D., Tzovaras, D., Strintzis, M.G., 2006. Efficient 3D model search and retrieval using generalized 3D Radon transforms. IEEE Trans. on Multimedia, 8(1):101-114.

[8] Elad, M., Tal, A., Ar, S., 2001. Content Based Retrieval of VRML Objects—An Iterative and Interactive Approach. Proc. Eurographics Workshop on Multimedia. Manchester, UK, p.97-108.

[9] Funkhouser, T., Min, P., Kazhdan, M., Chen, J., 2003. A search engine for 3D models. ACM Trans. on Graphics, 22(1):83-105.

[10] Funkhouser, T., Kazhdan, M., Min, P., Shilane, P., 2005. Shape-based retrieval and analysis of 3D models. Commun. ACM, 48(6):58-64.

[11] He, X.F., King, O., Ma, W.Y., 2003. Learning a semantic space from user’s relevance feedback for image retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 13(1):39-48.

[12] Iyer, N., Jayanti, S., Lou, K.Y., Kalyanaraman, Y., Ramani, K., 2005. Three-dimensional shape searching: state-of-the-art review and future trends. Computer-Aided Design, 37(5):509-530.

[13] Kazhdan, M., Funkhouser, T., Rusinkiewicz, S., 2004. Shape matching and anisotropy. ACM Trans. on Graphics, 23(3):623-629.

[14] Kolonias, I., Tzovaras, D., Malassiotis, S., Strintzis, M.G., 2005. Fast content-based search of VRML models based on shape descriptors. IEEE Trans. on Multimedia, 7(1):114-126.

[15] Leifman, G., Meir, R., Tal, A., 2005. Semantic-oriented 3D shape retrieval using relevance feedback. The Visual Computer, 21(8):865-875.

[16] Mandel, M.I., Poliner, G.E., Ellis, D.P., 2006. Support vector machine active learning for music retrieval. Multimedia Systems, 12(1):3-13.

[17] Novotni, M., Park, G.J., Wessel, R., Klein, R., 2005. Evaluation of Kernel Based Methods for Relevance Feedback in 3D Shape Retrieval. Proc. 4th Int. Workshop on Content-based Multimedia Indexing. Riga, Latvia.

[18] Osada, R., Funkhouser, T., Saupe, D., Chazelle, B., Dobkin, D., 2002. Shape distributions. ACM Trans. on Graphics, 21(4):807-832.

[19] Paquet, E., Rioux, M., 1999. Nefertiti: a query by content software for three-dimensional models databases management. Image and Vision Computing, 17(2):157-166.

[20] Pu, J.T., Ramani, K., 2006. On visual similarity based 2D drawing retrieval. Computer-Aided Design, 38(3):249-259.

[21] Regli, W.C., Cicirello, V.A., 2000. Managing digital libraries for computer-aided design. Computer-Aided Design, 32(2):119-132.

[22] Sebastiani, F., 2002. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47.

[23] Shilane, P., Min, P., Kazhdan, M., Funkhouser, T., 2004. The Princeton Shape Benchmark. Proc. Shape Modeling and Applications. Palazzo Ducale, Italy, p.167-178.

[24] Tong, S., Chang, E., 2001. Support Vector Machine Active Learning for Image Retrieval. Proc. 9th Annual ACM Int. Conf. on Multimedia. Ottawa, Ontario, Canada, p.107-118.

[25] Vranic, D.V., Saupe, D., 2002. Description of 3D-shape Using a Complex Function on the Sphere. Proc. IEEE Int. Conf. on Multimedia and Expo. Lausanne, Switzerland, p.177-180.

[26] Vranic, D.V., 2004. 3D Model Retrieval. Ph.D Thesis, University of Leipzig, German.

[27] Vranic, D.V., 2005. DESIRE: A Composite 3D-shape Descriptor. Proc. IEEE Int. Conf. on Multimedia and Expo. Amsterdam, the Netherland, p.962-965.

[28] Yeh, J.S., Chen, D.Y., Chen, B.Y., Ouhyoung, M., 2005. A web-based three-dimensional protein retrieval system by matching visual similarity. Bioinformatics, 21(13):3056-3057.

[29] Zhou, X.S., Huang, T.S., 2002. Unifying keywords and visual contents in image retrieval. IEEE Multimedia, 9(2):23-33.

[30] Zhou, X.S., Thomas, S.H., 2003. Relevance feedback in image retrieval: a comprehensive review. Multimedia Systems, 8(6):536-544.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE