CLC number: TP301.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 16
Clicked: 6315
Wei-min ZHONG, Shao-jun LI, Feng QIAN. θ-PSO: a new strategy of particle swarm optimization[J]. Journal of Zhejiang University Science A, 2008, 9(6): 786-790.
@article{title="θ-PSO: a new strategy of particle swarm optimization",
author="Wei-min ZHONG, Shao-jun LI, Feng QIAN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="6",
pages="786-790",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071278"
}
%0 Journal Article
%T θ-PSO: a new strategy of particle swarm optimization
%A Wei-min ZHONG
%A Shao-jun LI
%A Feng QIAN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 6
%P 786-790
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071278
TY - JOUR
T1 - θ-PSO: a new strategy of particle swarm optimization
A1 - Wei-min ZHONG
A1 - Shao-jun LI
A1 - Feng QIAN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 6
SP - 786
EP - 790
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071278
Abstract: particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration coefficients, etc. In this paper, a more simple strategy of PSO algorithm called θ-PSO is proposed. In θ-PSO, an increment of phase angle vector replaces the increment of velocity vector and the positions are decided by the mapping of phase angles. Benchmark testing of nonlinear functions is described and the results show that the performance of θ-PSO is much more effective than that of the standard PSO.
[1] Clerc, M., 1999. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. Proc. ICEC. Washington, DC, p.1951-1957.
[2] Eberhart, R.C., Kennedy, J., 1995. A New Optimizer Using Particle Swarm Theory. Proc. 6th Int. Symp. on Micro Machine and Human Science. IEEE Service Center, Piscataway, NJ, p.39-43.
[3] Fan, S.K.S., Zahara, E., 2007. A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res., 181(2):527-548.
[4] Ho, S.L., Yang, S.Y., Ni, G.Z., Wong, K.F., 2007. An improved PSO method with application to multimodal functions of inverse problems. IEEE Trans. on Magn., 43(4):1597-1600.
[5] Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization. Proc. 5th Int Conf. on Neural Networks. IEEE Service Center, Piscataway, NJ, p.1942-1948.
[6] Kennedy, J., Eberhart, R.C., 2001. Swarm Intelligence. Morgan Kaufmann Publishers, Inc., San Francisco, CA.
[7] Lee, T.Y., Chen, C.L., 2007. Iteration particle swarm optimization for contract capacities selection of time-of-use rates industrial customers. Energy Conv. Manag., 48(4):1120-1131.
[8] Shi, Y., Eberhart, R.C., 1998. A Modified Particle Swarm Optimizer. Proc. IEEE World Congress on Computational Intelligence, p.69-73.
[9] Trelea, I.C., 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett., 85(6):317-325.
[10] Zhang, L.P., Yu, H.J., Hu, S.X., 2005. Optimal choice of parameters for particle swarm optimization. J. Zhejiang Univ. Sci., 6A(6):528-534.
Open peer comments: Debate/Discuss/Question/Opinion
<1>