CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-04-29
Cited: 0
Clicked: 6151
Yong HE, Rui-xi YUAN, Xiao-jun MA, Jun LI. Enhanced power saving mechanism for supporting multicast services in 802.11 wireless LANs[J]. Journal of Zhejiang University Science A, 2009, 10(6): 828-833.
@article{title="Enhanced power saving mechanism for supporting multicast services in 802.11 wireless LANs",
author="Yong HE, Rui-xi YUAN, Xiao-jun MA, Jun LI",
journal="Journal of Zhejiang University Science A",
volume="10",
number="6",
pages="828-833",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820514"
}
%0 Journal Article
%T Enhanced power saving mechanism for supporting multicast services in 802.11 wireless LANs
%A Yong HE
%A Rui-xi YUAN
%A Xiao-jun MA
%A Jun LI
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 6
%P 828-833
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820514
TY - JOUR
T1 - Enhanced power saving mechanism for supporting multicast services in 802.11 wireless LANs
A1 - Yong HE
A1 - Rui-xi YUAN
A1 - Xiao-jun MA
A1 - Jun LI
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 6
SP - 828
EP - 833
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820514
Abstract: Traditional 802.11 power saving mechanism (PSM) treats multicast and broadcast traffic equally, and suffers significant performance degradation with multicast background traffic. This paper proposes an enhanced PSM that effectively differentiates multicast streams. It re-arranges the virtual bitmap of the traffic indication map (TIM) to carry traffic status for multicast groups and introduces a concept of sequential transmission of multi-addressed data to facilitate differentiation among multicast groups. Our analysis shows that the enhanced PSM can effectively save power in mixed traffic environments.
[1] Adams, J., Muntean, G.M., 2007. Adaptive-buffer Power Save Mechanism for Mobile Multimedia Streaming. Proc. ICC, Glasgow, Scotland, p.4548-4553.
[2] Anastasi, G., Conti, M., Gregori, E., Passarella, A., 2008. 802.11 power-saving mode for mobile computing in Wi-Fi hotspots: limitations, enhancements and open issues. ACM Wirel. Networks, 14(6):745-768.
[3] Feeney, L.M., Nilsson, M., 2001. Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment. Proc. INFOCOM, Anchorage, AK, p.1548-1557.
[4] Gupta, A., Mohapatra, P., 2007. Energy Consumption and Conservation in WiFi Based Phones: A Measurement-based Study. Proc. SECON, San Diego, CA, p.122-131.
[5] He, Y., Yuan, R., Ma, X., Li, J., 2008. The IEEE 802.11 Power Saving Mechanism: An Experimental Study. Proc. WCNC, Las Vegas, Nevada, p.1362-1367.
[6] IEEE Std. 802.11, 1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Computer Society LAN MAN Standards Committee.
[7] IEEE Std. 802.11v, 2008. Amendment to IEEE Std. 802.11: Wireless Network Management, Draft 2.0. IEEE Computer Society LAN MAN Standards Committee.
[8] Namboodiri, V., Gao, L., 2008. Towards Energy Efficient VoIP Over Wireless LANs. Proc. Mobihoc, Hong Kong, China, p.169-178.
[9] Tan, E., Guo, L., Chen, S., Zhang, X., 2007. PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs. Proc. ICNP, Beijing, China, p.123-132.
Open peer comments: Debate/Discuss/Question/Opinion
<1>