Full Text:   <4855>

CLC number: O631

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2009-04-23

Cited: 11

Clicked: 7948

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.5 P.704-709

http://doi.org/10.1631/jzus.A0820733


Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law


Author(s):  Sorin HOLOTESCU, Floriana D. STOIAN

Affiliation(s):  Department of Thermal Machines, Technology and Transportation, “ more

Corresponding email(s):   sorin.holotescu@mec.upt.ro

Key Words:  Effective thermal conductivity (ETC), Filler size distribution, Equivalent volume fraction, Composite polymer


Sorin HOLOTESCU, Floriana D. STOIAN. Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law[J]. Journal of Zhejiang University Science A, 2009, 10(5): 704-709.

@article{title="Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law",
author="Sorin HOLOTESCU, Floriana D. STOIAN",
journal="Journal of Zhejiang University Science A",
volume="10",
number="5",
pages="704-709",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820733"
}

%0 Journal Article
%T Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law
%A Sorin HOLOTESCU
%A Floriana D. STOIAN
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 5
%P 704-709
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820733

TY - JOUR
T1 - Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law
A1 - Sorin HOLOTESCU
A1 - Floriana D. STOIAN
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 5
SP - 704
EP - 709
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820733


Abstract: 
We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution—chosen as the Rosin-Rammler distribution. The ETC is determined based on certain hypotheses that connect the behavior of a real composite material A, to that of a model composite material B, filled with mono-dimensional filler. The application of these hypotheses to the Maxwell model for ETC is presented. The validation of the new model and its characteristic equation was carried out using experimental data from the reference. The comparison showed that by using the size distribution law a very good fit between the equation of the new model (the size distribution model for the ETC) and the reference experimental results is obtained, even for high volume fractions, up to about 50%.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Agari, Y., Uno, T., 1986. Estimation on thermal conductivities of filled polymers. Journal of Applied Polymer Science, 32(7):5705-5712.

[2] Annapragada, S.R., Dhavaleswarapu, H.K., 2006. Prediction of Effective Thermal Conductivity of Particulate Composites. Proceedings of Project 2006 ME 608, West Lafayette, IN-47907, USA.

[3] Cai, W.Z., Tu, S.T., Tao, G.L., 2005. Thermal conductivity of PTFE composites with three-dimensional randomly distributed fillers. Journal of Thermoplastic Composite Materials, 18(3):241-253.

[4] Chen, G., Yu, W., Singh, D., Cookson, D., Routbort, J., 2008. Application of SANX to the study of particle-size-dependent thermal conductivity in silica nanofluids. Journal of Nanoparticle Research, 10(7):1109-1114.

[5] Cheng, S.C., Vachon, R.I., 1969. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. International Journal of Heat Mass Transfer, 12(3):249-264.

[6] Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T., 2008. Nanofluids: Science and Technology. John Wiley & Sons, Hoboken, NJ, USA, p.167-204.

[7] Filip, C., Garnier, B., Danes, F., 2007. Effective conductivity of a composite in a primitive tetragonal lattice of highly conducting spheres in resistive thermal contact with the isolating matrix. Journal of Heat Transfer, 129(12):1617-1626.

[8] Ganapathy, D., Singh, K., Phelan, P.E., Prasher, R., 2005. An effective unit cell approach to compute the thermal conductivity of composites with cylindrical Particles. Journal of Heat Transfer, 127(6):553-559.

[9] Gupta, M., Yang, J., Roy, C., 2002. Modelling the effective thermal conductivity in polydispersed bed systems: a unified approach using the linear packing theory and unit cell model. The Canadian Journal of Chemical Engineering, 80:830-839.

[10] Hallouet, B., Pelster, R., 2007. 3D-simulation of topology-induced changes of effective permeability and permittivity in composite materials. Journal of Nanomaterials, article ID 80814.

[11] Hamilton, R.L., Crosser, O. K., 1962. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1(3):187-191. [doi10.1021/i160003a005]

[12] Hasselman, D.P.H., Johnson, L.F., 1987. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 21(6):508-515.

[13] Hayes, B.S., Seferis, J.C., 2002. Influence of particle size distribution of preformed rubber on the structure and properties of composite systems. Journal of Composite Materials, 36(3):299-312.

[14] Jackson, R.L., Bhavnani, S.H., Ferguson, T.P., 2008. A multiscale model of thermal contact resistance between rough surfaces. Journal of Heat Transfer, 130(8):081301-1-081301-8.

[15] Jeffrey, D.J., 1973. Conduction through a random suspension of spheres. Proceedings of the Royal Society London A, 335:355-367.

[16] Karayacoubian, P., Yovanovich, M.M., Culham, J.R., 2006. Thermal Resistance—Based Bounds for the Effective Thermal Conductivity of Composite Thermal Interface Materials. Proc. 22nd IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas (Texas), USA, Paper No. 1-4244-0154-2.

[17] Kumlutas, D., Tavman, I.H., 2006. A numerical and experimental study on thermal conductivity of particle filled polymer composites. Journal of Thermoplastic Composite Materials, 19(4):441-455.

[18] Lee, W.S., Yu, J., 2005. Comparative study of thermally conductive fillers in underfill for the electronic components. Diamond & Related Materials, 14(10):1647-1653.

[19] Nielsen, L.E., 1978. Predicting the Properties of Mixtures: Mixture Rules in Science and Engineering. Marcel Dekker Inc., New York, USA.

[20] Ostoja-Starzewski, M., 2002. Microstructural randomness versus representative volume element in thermomechanics. Journal of Applied Mechanics, 69(1):25-35.

[21] Pitchumani, R., 1999. Evaluation of thermal conductivities of disordered composite media using a fractal model. Journal of Heat Transfer, 121(1):163-166.

[22] Tavman, I.H., 2004. Thermal Conductivity of Particle ReinForced Polymer Composites. Proc. NATO Advanced Study Institute on Nanoengineered Nanofibrous Materials, Kluver Academic Publishers, Belek-Antalya, Turkey, p.451-458.

[23] Tekce, H.S., Kumlutas, D., Tavman, I.H., 2007. Effect of particle shape on thermal conductivity of copper reinforced polymer composite. Journal of Reinforced Plastics and Composites, 26(1):113-121.

[24] Tu, S.T., Cai, W.Z., Yin, Yong, Y., Ling, X., 2005. Numerical simulation of saturation behavior of physical properties in composites with randomly distributed second-phase. Journal of Composite Materials, 39(7):617-631.

[25] Zhou, W., Wang, C., An, Q., Ou, H., 2008. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. Journal of Composite Materials, 42(2):173-187.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE