Full Text:   <3496>

Summary:  <2059>

CLC number: TK124

On-line Access: 2015-06-04

Received: 2014-05-05

Revision Accepted: 2014-11-18

Crosschecked: 2015-05-07

Cited: 3

Clicked: 5351

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu-fei Wang

http://orcid.org/0000-0002-9449-8705

Xu Xu

http://orcid.org/0000-0003-3697-2787

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.6 P.478-490

http://doi.org/10.1631/jzus.A1400120


Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity


Author(s):  Yu-fei Wang, Xu Xu, Tian Tian, Li-wu Fan, Wen-long Wang, Zi-tao Yu

Affiliation(s):  College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China; more

Corresponding email(s):   xuxu@cjlu.edu.cn

Key Words:  Ethylene glycol-silicon carbide (SiC-EG) nanofluids, Mixed convection, Triangular enclosure, Rotating cylinder, Rayleigh number


Yu-fei Wang, Xu Xu, Tian Tian, Li-wu Fan, Wen-long Wang, Zi-tao Yu. Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity[J]. Journal of Zhejiang University Science A, 2015, 16(6): 478-490.

@article{title="Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity",
author="Yu-fei Wang, Xu Xu, Tian Tian, Li-wu Fan, Wen-long Wang, Zi-tao Yu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="6",
pages="478-490",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400120"
}

%0 Journal Article
%T Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity
%A Yu-fei Wang
%A Xu Xu
%A Tian Tian
%A Li-wu Fan
%A Wen-long Wang
%A Zi-tao Yu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 6
%P 478-490
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400120

TY - JOUR
T1 - Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: simulations based on the measured thermal conductivity and viscosity
A1 - Yu-fei Wang
A1 - Xu Xu
A1 - Tian Tian
A1 - Li-wu Fan
A1 - Wen-long Wang
A1 - Zi-tao Yu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 6
SP - 478
EP - 490
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400120


Abstract: 
A numerical study has been carried out for a laminar steady mixed convection flow in a 2D triangular enclosure with an inner rotating coaxial cylinder, with the enclosure filled with ethylene glycol-silicon carbide (SiC-EG). The thermal conductivity and viscosity of the SiC-EG nanofluids were experimentally determined by using a Decagon Devices KD2 Pro thermal property meter and a rotational Brookfield viscometer, respectively. Various pertinent parameters, such as the dimensionless rotation velocity, solid volume fraction, dimensionless radius of the inner cylinder, and rayleigh numbers, were analyzed to determine their influences on heat transfer and fluid flow. Results clearly show how the direction of rotation of the cylinder affects the thermal performance in a triangular enclosure. It is found that the average Nusselt number increases with rise in the rayleigh number or as more nanoparticles are added to the base liquid. It was also observed that at constant rayleigh number, different rotational conditions have remarkable effects on the flow and heat transfer characteristics.

三角形封闭腔内内含旋转柱体时碳化硅-乙二醇纳米流体层流混合对流传热特性研究

目的:明确在封闭腔内放置旋转柱体时,柱体尺寸及转速对不同浓度下纳米流体的流动传热的影响。
创新点:1.数值模拟中采用的碳化硅-乙二醇(SiC-EG)纳米流体的重要热物性参数均为实验测量值;2.考虑封闭腔内柱体的动态旋转对腔内纳米流体流动传热的影响。
方法:基于对SiC-EG纳米流体导热系数与粘度的实验测量,采用数值模拟方法探究封闭腔内旋转柱体、纳米流体浓度以及瑞利数对SiC-EG纳米流体流动传热性能的影响。
结论:1.在柱体的旋转方向与由自然对流引起的纳米流体流动方向相同的情况下,置于腔内的旋转柱体可以起到强化传热的效果。2.二者旋转方向相反时情况较为复杂,当柱体尺寸较小且柱体转速较低时削弱传热效果;当柱体尺寸较大且转速较高而引发的强制对流占主导地位时,将对腔内传热起到一定的强化效果。

关键词:SiC-EG纳米流体;混合对流;三角封闭腔;旋转柱体;瑞利数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bararnia, H., Soleimani, S., Ganji, D.D., 2011. Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. International Communications in Heat and Mass Transfer, 38(10):1436-1442.

[2]Brinkman, H.C., 1952. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4):571-581.

[3]Choi, S.U.S., Eastman, J.A., 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, San Francisco, USA.

[4]Costa, V.A.F., Raimundo, A.M., 2010. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. International Journal of Heat and Mass Transfer, 53(5-6):1208-1219.

[5]Fu, W.S., Cheng, C.S., Shieh, W.J., 1994. Enhancement of natural convection heat transfer of an enclosure by a rotating circular cylinder. International Journal of Heat and Mass Transfer, 37(13):1885-1897.

[6]Ghaddar, N.K., 1996. Natural convection over rotating cylindrical heat source in an enclosure. Journal of Thermophysics and Heat Transfer, 10(2):303-311.

[7]Ghaddar, N.K., Thiele, F., 1994. Natural convection over a rotating cylindrical heat source in a rectangular enclosure. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 26(6):701-717.

[8]Ghasemi, B., Aminossadati, S.M., 2010. Brownian motion of nanoparticles in a triangular enclosure with natural convection. International Journal of Thermal Sciences, 49(6):931-940.

[9]Kim, B.S., Lee, D.S., Ha, M.Y., et al., 2008. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International Journal of Heat and Mass Transfer, 51(7-8):1888-1906.

[10]Krane, R.J., Jessee, J., 1983. Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, ASME, New York, 1:323-329.

[11]Kuehn, T.H., Goldstein, R.J., 1976. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. Journal of Fluid Mechanics, 74(04):695-719.

[12]Lee, J.M., Ha, M.Y., Yoon, H.S., 2010. Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. International Journal of Heat and Mass Transfer, 53(25-26):5905-5919.

[13]Liao, C.C., Lin, C.A., 2012. Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows. International Journal of Heat and Mass Transfer, 55(23-24):6638-6650.

[14]Maxwell, J.C., 1904. A Treatise on Electricity and Magnetism. 2nd Edition, Oxford University Press, Cambridge, p.435-441.

[15]Misirlioglu, A., 2006. The effect of rotating cylinder on the heat transfer in a square cavity filled with porous medium. International Journal of Engineering Science, 44(18-19):1173-1187.

[16]Moukalled, F., Acharya, S., 1996. Natural convection in the annulus between concentric horizontal circular and square cylinders. Journal of Thermophysics and Heat Transfer, 10(3):524-531.

[17]Parvin, S., Alim, M.A., Hossain, N.F., 2012. Prandtl number effect on cooling performance of a heated cylinder in an enclosure filled with nanofluids. International Communications in Heat and Mass Transfer, 39(8):1220-1225.

[18]Roslan, R., Saleh, H., Hashim, I., 2012. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. International Journal of Heat and Mass Transfer, 55(23-24):7247-7256.

[19]Shih, Y., Khodadadi, J., Weng, K., et al., 2009. Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. Journal of Heat Transfer, 131(11):111701.

[20]Soleimani, S., Sheikholeslami, M., Ganji, D.D., et al., 2012. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. International Communications in Heat and Mass Transfer, 39(4):565-574.

[21]Xu, X., Yu, Z.T., Hu, Y.C., et al., 2010. A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure. International Journal of Heat and Mass Transfer, 53(1-3):345-355.

[22]Xu, X., Yu, Z.T., Hu, Y.C., et al., 2012. Transient natural convective heat transfer of a low-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangular enclosure. International Journal of Heat and Mass Transfer, 55(4):995-1003.

[23]Yu, Z.T., Xu, X., Hu, Y.C., et al., 2010. Transient natural convective heat transfer from a heated triangular cylinder to its air-filled coaxial cylindrical enclosure. International Journal of Heat and Mass Transfer, 53(19-20):4296-4303.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE