CLC number: TM356
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-02-07
Cited: 7
Clicked: 5728
Ying-xiang Liu, Jun-kao Liu, Wei-shan Chen, Xiao-hui Yang. A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation[J]. Journal of Zhejiang University Science A, 2012, 13(3): 189-196.
@article{title="A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation",
author="Ying-xiang Liu, Jun-kao Liu, Wei-shan Chen, Xiao-hui Yang",
journal="Journal of Zhejiang University Science A",
volume="13",
number="3",
pages="189-196",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100225"
}
%0 Journal Article
%T A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation
%A Ying-xiang Liu
%A Jun-kao Liu
%A Wei-shan Chen
%A Xiao-hui Yang
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 3
%P 189-196
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100225
TY - JOUR
T1 - A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation
A1 - Ying-xiang Liu
A1 - Jun-kao Liu
A1 - Wei-shan Chen
A1 - Xiao-hui Yang
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 3
SP - 189
EP - 196
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100225
Abstract: This study presents and verifies a new idea for constructing a rotary traveling wave ultrasonic motor (USM) that uses the radial bending mode of a ring. In the new design, 20 trapezoid cross section slots are cut symmetrically in the outer surface of a thick duralumin alloy ring, where 20 PZT stacks are nested. In each slot, two wedging blocks are set between the PZT stack and the two sides of the slot respectively to apply preloading on the PZT ceramics. Two radial bending modes of the stator that have a phase difference of a quarter wavelength on space are generated by using the d33 operating mode of the PZT elements, and then a flexural traveling wave is formed by the superimposing of two standing waves whose amplitudes are equal and phases are different by 90° temporally. Two conical rotors are pressed to each end of the ring type stator by a coiled spring. The finite element method (FEM) simulation is developed to validate the feasibility of the proposed motor. The maximal speed and torque of the prototype are tested to be 126 r/min and 0.8 N·m, respectively.
[1]Asumi, K., Fukunaga, R., Fujimura, T., Kurosawa, M.K., 2009. Miniaturization of a V-shape transducer ultrasonic motor. Japanese Journal of Applied Physics, 48:07GM02.
[2]Chen, W.S., Liu, Y.X., Liu, J.K., Shi, S.J., 2010. A linear ultrasonic motor using bending vibration transducer with double driving feet. Ferroelectronics, 400:221-230.
[3]Iula, A., Corbo, A., Pappalardo, M., 2010. FE analysis and experimental evaluation of the performance of a travelling wave rotary motor driven by high power ultrasonic transducers. Sensors and Actuators A: Physical, 160:94-100.
[4]Jin, J.M., Zhao, C.S., 2008. A novel traveling wave ultrasonic motor using a bar shaped transducer. Journal of Wuhan University of Technology: Materials Science Edition, 23(6):961-963.
[5]Li, X., Chen, W.S., Xie, T., Liu, J.K., 2007. Novel high torque bearingless two-sided rotary ultrasonic motor. Journal of Zhejiang University-SCIENCE A, 8(5):786-792.
[6]Liu, Y.X., Chen, W.S., Liu, J.K., Shi, S.J., 2010a. A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot. IEEE Transactions on Ultrasonics, Ferroelectrics Frequency Control, 57:1860-1867.
[7]Liu, Y.X., Chen, W.S., Liu, J.K., Shi, S.J., 2010b. A cylindrical traveling wave ultrasonic motor using longitudinal vibration transducers. Ferroelectronics, 409:117-127.
[8]Liu, Y.X., Chen, W.S., Liu, J.K., Shi, S.J., 2010c. A cylindrical traveling wave ultrasonic motor using longitudinal and bending composite transducer. Sensors and Actuators A: Physical, 161:158-163.
[9]Luo, L.H., Zhu, H., Zhao, C.S., Wang, F.F., Luo, H.S., 2008. A cylinder-shaped miniature ultrasonic motor based on Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Journal of Intelligent Material Systems and Structures, 19:1457-1461.
[10]Oh, J.H., Jung, H.E., Lee, J.S., Lim, K.J., Kim, H.H., Ryu, B.H., Park, D.H., 2009. Design and performance of high torque ultrasonic motor for application of automobile. Journal of Electroceramics, 22:150-155.
[11]Park, J.S., Kim, S.T., Kim, J.W., 2005. Ultrasonic linear motor using L1-B4 mode and its analysis. Japanese Journal of Applied Physics, 44(1A):412-416.
[12]Petit, L., Gonnard, P., 2009. A multilayer TWILA ultrasonic motor. Sensors and Actuators A: Physical, 149(1):113-119.
[13]Shi, Y.L., Zhao, C.S., Huang, W.Q., 2010. Linear ultrasonic motor with wheel-shaped stator. Sensors and Actuators A: Physical, 161:205-209.
[14]Sun, D.M., Wang, S., Sakurai, J., Choi, K.B., Shimokohbe, A., Hata, S., 2010. A piezoelectric linear ultrasonic motor with the structure of a circular cylindrical stator and slider. Smart Materials and Structures, 19:045008.
[15]Ting, Y., Chen, L.C., Li, C.C., Huang, J.L., 2007. Traveling-wave piezoelectric linear motor part I: The stator design. IEEE Transactions on Ultrasonics, Ferroelectrics Frequency Control, 54(4):847-853.
[16]Ueha, S., Tomikawa, Y., 1993. Ultrasonic Motors: Theory and Applications. Clarendon Press, Oxford.
[17]Zhang, X.L., Tan, Y.H., 2008. Modeling of ultrasonic motor with dead-zone based on Hammerstein model structure. Journal of Zhejiang University-SCIENCE A, 9(1):58-64.
[18]Zhao, C.S., 2010. Ultrasonic Motors Technologies and Applications. Science Press, Beijing.
Open peer comments: Debate/Discuss/Question/Opinion
<1>