References
[1] Alcala, C.F., Qin, S.J., 2010. Reconstruction-based contribution for process monitoring with kernel principal component analysis.
Industrial & Engineering Chemistry Research, 49(17):7849-7857.
[2] Chen, X.Y., Yan, X.F., 2012. Using improved self-organizing map for fault diagnosis in chemical industry process.
Chemical Engineering Research & Design, in press,:
[3] Chiang, L.H., Russel, E.L., Braatz, R.D., 2001. Fault Detection and Diagnosis in Industrial Systems. Springer,London :
[4] Detroja, K.P., Gudi, R.D., Patwardhan, S.C., 2007. Plant-wide detection and diagnosis using correspondence analysis.
Control Engineering Practice, 15(12):1468-1483.
[5] Dunia, R., Qin, S.J., 1998. Joint diagnosis of process and sensor faults using principal component analysis.
Control Engineering Practice, 6(4):457-469.
[6] Garcia-Alvarez, D., Fuente, M.J., Sainz, G.G., 2012. Fault detection and isolation in transient states using principal component analysis.
Journal of Process Control, 22(3):551-563.
[7] Ge, Z.Q., Song, Z.H., 2008. Batch process monitoring based on multilevel ICA-PCA.
Journal of Zhejiang University-SCIENCE A, 9(8):1061-1069.
[8] He, X.B., Wang, W., Yang, Y.P., Yang, Y.H., 2009. Variable-weighted fisher discriminant analysis for process fault diagnosis.
Journal of Process Control, 19(6):923-931.
[9] Jackson, J.E., 1991. A Users Guide to Principal Components. John Wiley & Sons,New York :
[10] Juricek, B.C., Seborg, D.E., Larimore, W.E., 2004. Fault detection using canonical variate analysis.
Industrial Engineering & Chemistry Research, 43(2):458-474.
[11] Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R., Bakshi, B.R., 2002. Comparison of multivariate statistical process control monitoring methods with applications to the Eastman challenge problem.
Computers & Chemical Engineering, 26(2):161-174.
[12] Kourti, T., MacGregor, J.F., 1995. Process analysis, monitoring and diagnosis using multivariate projection methods.
Chemometrics & Intelligent Laboratory Systems, 28(1):3-21.
[13] Kresta, J.V., MacGregor, J.F., Marlin, T.E., 1991. Multivariate statistical monitoring of process operating performance.
The Canadian Journal of Chemical Engineering, 69(1):35-47.
[14] Ku, W., Storer, R.H., Georgakis, C., 1995. Disturbance detection and isolation by dynamic principal component analysis.
Chemometrics & Intelligent Laboratory Systems, 30(1):179-196.
[15] Lee, J.M., Yoo, C.K., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., 2004. Nonlinear process monitoring using kernel principal component analysis.
Chemical Engineering Science, 59(1):223-234.
[16] Lee, J.M., Yoo, C.K., Lee, I.B., 2004. Statistical process monitoring with independent component analysis.
Journal of Process Control, 14(5):467-485.
[17] Lee, J.M., Qin, S.J., Lee, I.B., 2006. Fault detection and diagnosis based on modified independent component analysis.
AIChE Journal, 52(10):3501-3514.
[18] Li, W., Yue, H., Valle, C.S., Qin, S.J., 2000. Recursive PCA for adaptive process monitoring.
Journal of Process Control, 10(5):471-486.
[19] Liu, Y.M., Ye, L.B., Zheng, P.Y., Shi, X.R., Hu, B., Liang, J., 2010. Multiscale classification and its application to process monitoring.
Journal of Zhejiang University-SCIENCE C (Computers & Electronics), 11(6):425-434.
[20] Lyman, P.R., Georgakist, C., 1995. Plant-wide control of the Tennessee Eastman problem.
Computers & Chemical Engineering, 19(3):321-331.
[21] Nomikos, P., MacGregor, J., 1995. Multivariate SPC charts for monitoring batch processes.
Technometrics, 37(1):41-59.
[22] Qin, S.J., 2003. Statistical process monitoring: basics and beyond.
Journal of Chemometrics, 17(8-9):480-502.
[23] Russell, E.L., Chiang, L.H., Braatz, R.D., 2000. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis.
Chemometrics & Intelligent Laboratory Systems, 51(1):81-93.
[24] Stubbs, S., Zhang, J., Morris, J.L., 2012. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach.
Computers & Chemical Engineering, 41:77-87.
[25] Tamura, M., Tsujita, S., 2007. A study on the number of principal components and sensitivity of fault detection using PCA.
Computers & Chemical Engineering, 31(9):1035-1046.
[26] Togkalidou, T., Braatz, R.D., Johnson, B.K., Davidson, O., Andrews, A., 2001. Experimental design and inferential modeling in pharmaceutical crystallization.
AIChE Journal, 47(1):160-168.
[27] Valle, S., Li, W., Qin, S.J., 1999. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods.
Industrial & Engineering Chemistry Research, 38(11):4389-4401.
[28] Wang, J., He, Q.P., 2010. Multivariate statistical process monitoring based on statistics pattern analysis.
Industrial Engineering & Chemistry Research, 49(17):7858-7869.
[29] Wang, X., Kruger, U., Irwin, G.W., 2005. Process monitoring approach using fast moving window PCA.
Industrial & Engineering Chemistry Research, 44(15):5691-5702.
[30] Wold, S., 1978. Cross-validatory estimation of the number of components in factor and principal components models.
Technometrics, 20(4):397-405.
[31] Yoon, S., MacGregor, J., 2001. Fault diagnosis with multivariate statistical models, part I: using steady-state fault signatures.
Journal of Process Control, 11(4):387-400.
[32] Yu, J., Qin, S.J., 2008. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models.
AIChE Journal, 54(7):1811-1829.
Open peer comments: Debate/Discuss/Question/Opinion
<1>