CLC number: TB532
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-04-18
Cited: 3
Clicked: 6366
Jie Mao, Zhi-yong Hao, Kang Zheng, Guo-xi Jing. Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine[J]. Journal of Zhejiang University Science A, 2013, 14(5): 341-352.
@article{title="Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine",
author="Jie Mao, Zhi-yong Hao, Kang Zheng, Guo-xi Jing",
journal="Journal of Zhejiang University Science A",
volume="14",
number="5",
pages="341-352",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300055"
}
%0 Journal Article
%T Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine
%A Jie Mao
%A Zhi-yong Hao
%A Kang Zheng
%A Guo-xi Jing
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 5
%P 341-352
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300055
TY - JOUR
T1 - Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine
A1 - Jie Mao
A1 - Zhi-yong Hao
A1 - Kang Zheng
A1 - Guo-xi Jing
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 5
SP - 341
EP - 352
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300055
Abstract: A novel sound quality simulation approach was proposed to optimize the acoustic performance of a four-cylinder diesel engine. Finite element analysis, single-input and multiple-output technology, flexible multi-body dynamics, and boundary element codes were used to acquire the hexahedron-element model, experimental modal frequencies, vibration velocities, and structurally radiated noise of the block, respectively. The simulated modal frequencies and vibration velocities agreed well with the experimental data, which validated the finite-element block. The acoustic response showed that considerable acoustic power levels existed in 1500–1900 Hz and 2300–2800 Hz as the main frequency ranges to optimize the block acoustics. Then, the optimal block is determined in accordance with the novel approach, which reduces the overall value, high-frequency amplitudes, and peak values of acoustic power; thus, the loudness, sharpness, and roughness decline to make the sound quieter, lower-pitched, and smoother, respectively. Finally, the optimal block was cast and bench-tested. The results reveal that the sound quality of the optimal-block engine is substantially improved as numerically expected, which verifies the effectiveness of the research approach.
Open peer comments: Debate/Discuss/Question/Opinion
<1>