Full Text:   <3920>

Summary:  <2388>

CLC number: TU42

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-12-19

Cited: 3

Clicked: 8724

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.1 P.22-30

http://doi.org/10.1631/jzus.A1300178


An investigation of flow characteristics in slope siphon drains*


Author(s):  Yue-liang Cai1, Hong-yue Sun2, Yue-quan Shang1, Xiao-liang Xiong2

Affiliation(s):  1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   shy@zju.edu.cn

Key Words:  Siphon drainage, Wall pressing flow, Slug flow, Siphon hose diameter, Flow characteristics


Yue-liang Cai, Hong-yue Sun, Yue-quan Shang, Xiao-liang Xiong. An investigation of flow characteristics in slope siphon drains[J]. Journal of Zhejiang University Science A, 2014, 15(1): 22-30.

@article{title="An investigation of flow characteristics in slope siphon drains",
author="Yue-liang Cai, Hong-yue Sun, Yue-quan Shang, Xiao-liang Xiong",
journal="Journal of Zhejiang University Science A",
volume="15",
number="1",
pages="22-30",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300178"
}

%0 Journal Article
%T An investigation of flow characteristics in slope siphon drains
%A Yue-liang Cai
%A Hong-yue Sun
%A Yue-quan Shang
%A Xiao-liang Xiong
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 1
%P 22-30
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300178

TY - JOUR
T1 - An investigation of flow characteristics in slope siphon drains
A1 - Yue-liang Cai
A1 - Hong-yue Sun
A1 - Yue-quan Shang
A1 - Xiao-liang Xiong
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 1
SP - 22
EP - 30
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300178


Abstract: 
This paper presents a study of flow characteristics in high-lift siphon drains. A laboratory test was conducted to investigate the effects of hose diameter and flow velocity on siphon drainage. Three types of water flow were observed and analyzed. The experimental results show that the flow characteristics of siphon drainage are significantly influenced by the hose diameter. Water flows in the form of a wall pressing flow in a large diameter siphon hose (e.g., larger than 5.0 mm) under low flow velocity, which leads to discontinuous siphon drainage. However, water flows in the form of an integral slug flow in a small diameter siphon hose (e.g., smaller than 4.0 mm) under low flow velocity, which leads to continuous siphon drainage. Based on experimental observations, a thermodynamic derivation of the threshold of siphon hose diameter for continuous siphon drainage was analytically conducted. In slope engineering, a 3.6 mm polyurethane (PU) hose is recommended for siphon drainage.

边坡高扬程虹吸排水管流态特征研究

研究目的:从实验及理论角度阐述边坡高扬程虹吸排水容易断流造成虹吸中断的原因,并提供解决方案,实现虹吸排水的长期有效。
创新方法:利用物理模型实验,结合理论解析推导,得到了高扬程虹吸排水管顶部流态特征及其与管径的关系,解决了高扬程虹吸排水容易断流造成虹吸中断问题,保证了虹吸排水技术在边坡治理工程中的长期有效性。
研究手段:通过物理模型试验,揭示虹吸水流经过管顶区段的三种流型特征(见图4);利用热力学理论推导,得到了虹吸水流经过管顶区段由贴壁流向弹状流转变的临界管径,见公式(23)。
重要结论:管中形成气液共同移动的完整弹状流是实现虹吸排水长期稳定的关键,虹吸水流经过管顶区段由贴壁流向弹状流转变时存在临界管径。保证边坡工程中虹吸排水长期稳定的管径以3.6?mm为宜。

关键词:虹吸排水;贴壁流;弹状流;虹吸管径;液面形状

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Barajas, A.M., Panton, R.L., 1993. The effects of contact angle on two-phase flow in capillary tubes. International Journal of Multiphase Flow, 19(2):337-346. 


[2] Bertolini, G., Guida, M., Pizziolo, M., 2005. Landslides in Emilia-Romagna region (Italy): strategies for hazard assessment and risk management. Landslides, 2(4):302-312. 


[3] Bomont, S., 2008. Back experience of deep drainage for landslide stabilization through lines of siphon drains and electro-pneumatics drains: a French railway slope stabilization example.  Landslides and Engineered Slope: from the Past to the Future. CRC Press,Boca Raton, USA :1713-1720. 


[4] Bretherton, F.P., 1961. The motion of long bubbles in pipes. Journal of Fluid Mechanics, 10(2):166-188. 


[5] Cambiaghi, A., Schuster, R.L., 1989. Landslide damming and environmental protection—a case study from Northern Italy. Proceedings of 2nd International Symposium on Environmental Geotechnology, Shanghai, China, 1:381-385. 

[6] Clark, A.R., Fort, D.S., Holliday, J.K., 2007. Allowing for climate change; an innovative solution to landslide stabilisation in an environmentally sensitive area on the Isle of Wight. Landslides and Climate Change: Challenges and Solutions, Book Series: Proceedings and Monographs in Engineering, Water and Earth Sciences,:443-454. 


[7] Gillarduzzi, A., 2008. Sustainable landslide stabilisation using deep wells installed with siphon drains and electro-pneumatic pumps.  Landslides and Engineered Slope: from the Past to the Future. CRC Press,Boca Raton, USA :1547-1552. 


[8] Govi, M., 1989. The 1987 landslide on Mount Zandila in the Valtellina, Northern Italy. Landslide News, 3:1-3. 

[9] Hilpert, M., 2009. Effects of dynamic contact angle on liquid infiltration into horizontal capillary pipes: (semi)-analytical solutions. Journal of Colloid and Interface Science, 337(1):131-137. 


[10] Jiao, B., Qiu, L.M., Lu, J.L., 2009. Liquid film dryout model for predicting critical heat flux in annular two-phase flow. Journal of Zhejiang University-SCIENCE A, 10(3):398-417. 


[11] Jumars, P.A., 2013. Boundary-trapped, inhalant siphon and drain flows: pipe entry revisited numerically. Limnology and Oceanography: Fluids and Environments, 3:21-39. 


[12] Kong, L., 2004.  Two-phase Fluid Mechanics. (in Chinese), Higher Education Press,Beijing, China :

[13] Lao, D.Z., 2007.  Fundamentals of the Calculus of Variations (2nd Edition). (in Chinese), National Defense Industry Press,Beijing, China :

[14] Mao, Q.S., 1987. Deliberation of the relation between classification of aerating methods for high density fish farming and supersaturation of dissolved oxygen and a value range of air bubbles in the water. Fishery Machinery and Instrument, (in Chinese),4:3-5. 

[15] Mrvik, O., Bomont, S., 2012. Experience with treatment of road structure landslides by innovative methods of deep drainage. Landslides, WIT Press,:79-90. 


[16] Sassa, K., 2005. Landslide disasters triggered by the 2004 Mid-Niigata Prefecture earthquake in Japan. Landslides, 2(2):135-142. 


[17] Shrestha, B.B., Nakagawa, H., Kawaike, K., 2013. Glacial hazards in the Rolwaling valley of Nepal and numerical approach to predict potential outburst flood from glacial lake. Landslides, 10(3):299-313. 


[18] Shu, Q., Zhang, W.D., 2005. Siphon method to discharge deep groundwater in landslide. Science and Technology of West China, (in Chinese),2005(10):10-12. 

[19] Sun, H.Y., Wong, L.N.Y., Shang, Y.Q., 2012. Experimental studies of groundwater pipe flow network characteristics in gravelly soil slopes. Landslides, 9(4):475-483. 


[20] Sun, H.Y., Xiong, X.L., Shang, Y.Q., 2013. Pipe air accumulation causes and its control method in slope siphon drainage. Journal of Jilin University (Earth Science Edition), (in Chinese),44(1):279-285. 

[21] Taha, T., Cui, Z.F., 2004. Hydrodynamics of slug flow inside capillaries. Chemical Engineering Science, 59(6):1181-1190. 


[22] Tang, X.Z., Lu, L.P., Liu, G.L., 2009. The variational approach to capillary action. College Physics, (in Chinese),28(4):26-28. 

[23] Tretinnikov, O.N., Ikada, Y., 1994. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balanced method. Langmuir, 10(5):1606-1614. 


[24] Wallis, G.B., 1969.  One-dimensional Two-phase Flow. McGraw-Hill,New York :

[25] Wandelt, K., 2012.  Surface and Interface Science. Wiley-VCH,Weinheim, Germany :

[26] Yang, Y.Y., Yao, A.J., Zhang, Z.M., 2009. Experimental study of controlling groundwater technology for bank slope. Rock and Soil Mechanics, (in Chinese),30(8):2281-2285. 

[27] Zhang, Y.F., Zhang, C.L., 1999. Experimental study of siphon drainage in Xiangqian line K93 road cutting landslide. Subgrade Engineering, (in Chinese),4:26-30. 

[28] Zhang, Y.F., Zhang, Y.J., 1999. Research on siphon drainage application technology. China Railway Science, (in Chinese),20(3):52-60. 

[29] Zhao, W.R., Shi, H.X., Wang, D.H., 2004. Modeling of mass transfer characteristics of bubble column reactor with surfactant present. Journal of Zhejiang University SCIENCE, 5(6):714-720. 


[30] Zhu, F., Miao, R.C., Luo, D.B., 2007. Boundary reflection from the sunk curved liquid surface and its application. Chinese Journal of Quantum Electronics, (in Chinese),24(4):420-424. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE