References
[1] Ausas, R.F., Ragot, P., Leiva, J., 2007. The impact of the cavitation model in the analysis of microtextured lubricated journal bearings.
ASME Journal of Tribology, 129(4):868-875.
[2] Ausas, R.F., Jai, M., Buscaglia, G.C., 2009. A mass-conserving algorithm for dynamical lubrication problems with cavitation.
ASME Journal of Tribology, 131(3):031702
[3] Bayada, G., Chambat, M., Alaoui, M.E., 1990. Variational formulations and finite element algorithms for cavitation problems.
ASME Journal of Tribology, 112(2):398-403.
[4] Bayada, G., Chambat, M., Vazquez, C., 1998. Characteristics method for the formulation and computation of a free boundary cavitation problem.
Journal of Computational and Applied Mathematics, 98(2):191-212.
[5] Bayada, G., Martin, S., Vazquez, C., 2006. Micro-roughness effects in (elasto)hydrodynamic lubrication including a mass-flow preserving cavitation model.
Tribology International, 39:1707-1718.
[6] Boedo, S., Booker, J.F., 1995. Cavitation in normal separation of square and circular plates.
ASME Journal of Tribology, 117:403-409.
[7] Bonneau, D., Guines, D., Frene, J., 1995. EHD analysis, including structural inertia effects and a mass-conserving cavitation model.
ASME Journal of Tribology, 117(3):540-547.
[8] Brewe, D.E., 1986. Theoretical modeling of the vapor cavitation in dynamically loaded journal bearings.
ASME Journal of Lubrication Technology, 108(4):628-638.
[9] Cioc, S., Keith, T.G., 2003. Application of the CE/SE method to two-dimensional flow in fluid film bearings.
International Journal of Numerical Methods for Heat & Fluid Flow, 13(2):216-243.
[10] Cioc, S., Florin, F., Keith, T.G., 2003. Application of the CE/SE method to wave journal bearings.
STLE Tribology Transactions, 46(2):179-186.
[11] Durany, J., Garcia, G., Vasquez, C., 1997. An elasto-hydrodynamic coupled problem between a piezoviscous Reynolds equation and a hinged plate model.
Modlisation Mathmatique et Analyse Numrique, (in French),31(4):495-516.
[12] Durany, J., Pereira, J., Varas, F., 2006. A cell-vertex finite volume method for thermohydrodynamic problems in lubrication theory.
Computer Methods in Applied Mechanics and Engineering, 195(44-47):5949-5961.
[13] Elrod, H.G., 1981. A cavitation algorithm.
Journal of Lubrication Technology, 103(3):350-354.
[14] Elrod, H.G., Adams, M.L., 1975. A computer program for cavitation and starvation problems.
, Proceedings of 1st Leeds-Lyon Symposium on Tribology, New York, 37-42. :37-42.
[15] Etsion, I., Michael, O., 1994. Enhancing sealing and dynamic performance with partially porous mechanical face seals.
Tribology Transactions, 37(4):701-710.
[16] Etsion, I., Burstein, L., 1996. A model for mechanical seals with regular micro-surface structure.
Tribology Transactions, 39(3):677-683.
[17] Etsion, I., Kligerman, Y., Halperin, G., 1999. Analytical and experimental investigation of laser-textured mechanical seal faces.
Tribology Transactions, 42(3):511-516.
[18] Evans, L.C., 1997. Partial Differential Equations.
, American Mathematical Society, Berkeley, USA, 398-431. :398-431.
[19] Fatu, A., Hajjam, M., Bonneau, D., 2005. An EHD model to predict the interdependent behavior of two dynamically loaded hybrid journal bearings.
ASME Journal of Tribology, 127(2):416-424.
[20] Giacopini, M., Fowell, M.T., Dini, D., 2010. A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation.
ASME Journal of Tribology, 132:041702
[21] Hajjam, M., Bonneau, D., 2004. Elastohydrodynamic analysis of lip seals with microundulations.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 218(1):13-21.
[22] Hajjam, M., Bonneau, D., 2007. A transient finite element cavitation algorithm with application to radial lip seals.
Tribology International, 40:1258-1269.
[23] Ito, K., Kunisch, K., 2003. Semi-smooth Newton methods for variational inequalities of the first kind.
ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):41-62.
[24] Jakobsson, B., Floberg, L., 1957. The finite journal bearings considering vaporization.
Transactions of Chalmers University of Technology, 190:1-116.
[25] Kumar, A., Booker, J.F., 1991. A finite element cavitation algorithm.
ASME Journal of Tribology, 113(2):276-286.
[26] Kumar, A., Booker, J.F., 1994. A mass and energy conserving finite element lubrication algorithm.
ASME Journal of Tribology, 116(4):667-671.
[27] Murty, K.G., 1988. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag,Berlin, Germany :361-377.
[28] Nilsson, B., Hansbo, P., 2007. Adaptive finite element methods for hydrodynamic lubrication with cavitation.
International Journal for Numerical Methods in Engineering, 72(13):1584-1604.
[29] Olsson, K.O., 1965. Cavitation in dynamically loaded bearing.
Transactions of Chalmers University of Technology, 308:1-59.
[30] Optasanu, V., Bonneau, D., 2000. Finite element mass-conserving cavitation algorithm in pure squeeze motion. validation/application to a connecting-rod small end bearing.
ASME Journal of Tribology, 122:162-169.
[31] Payvar, P., Salant, R.F., 1992. Computational method for cavitation in a wavy mechanical seal.
ASME Journal of Tribology, 114(1):199-204.
[32] Qiu, Y., Khonsari, M.M., 2009. On the prediction of cavitation in dimples using a mass-conservative algorithm.
ASME Journal of Tribology, 131(4):041702
[33] Schweizer, B., 2009. Numerical approach for solving Reynolds equation with JFO boundary conditions incorporating ALE techniques.
ASME Journal of Tribology, 131(1):011702
[34] Shi, F., Salant, R.F., 1999. A mixed soft elastohydrodynamic lubrication model with interasperity cavitation and surface shear deformation.
ASME Journal of Tribology, 122(1):308-316.
[35] Shi, F., Paranjpe, R., 2002. An implicit finite element cavitation algorithm.
CMES, 3:507-515.
[36] Vijayaraghavan, D., Keith, T.G., 1990. An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm.
ASME Journal of Tribology, 112(1):44-51.
[37] Vijayaraghavan, D., Keith, T.G., 1990. Grid transformation and adaption techniques applied in the analysis of cavitated journal bearings.
ASME Journal of Tribology, 112(1):52-59.
[38] Vijayaraghavan, D., Keith, T.G., 1990. Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects.
ASME Journal of Tribology, 112(1):60-67.
[39] Vijayaraghavan, D., Keith, T.G., Brewe, D.E., 1991. Extension of transonic flow computational concepts in the analysis of cavitated bearings.
ASME Journal of Tribology, 113(3):539-546.
[40] Yu, Q., Keith, T.G., 1995. Prediction of cavitation in journal bearings using a boundary element method.
ASME Journal of Tribology, 117:411-421.
[41] Zienkiewicz, O.C., Taylor, R.L., 2000. The Finite Element Method. Nutterworth-Heinemann,Oxford, England :15-23.
Open peer comments: Debate/Discuss/Question/Opinion
<1>