Full Text:   <2912>

Summary:  <2109>

CLC number: X52

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-07-20

Cited: 9

Clicked: 7437

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.634-642

http://doi.org/10.1631/jzus.A1400115


The role of humic acid in stabilizing fullerene (C60) suspensions


Author(s):  Lu-qing Zhang1, Yu-kun Zhang1, Xiu-chun Lin1,3, Kun Yang1,2, Dao-hui Lin1,2

Affiliation(s):  1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   lindaohui@zju.edu.cn

Key Words:  Fullerene, Humic acid, Colloidal stability, Natural organic matter, Nanomaterial


Lu-qing Zhang, Yu-kun Zhang, Xiu-chun Lin, Kun Yang, Dao-hui Lin. The role of humic acid in stabilizing fullerene (C60) suspensions[J]. Journal of Zhejiang University Science A, 2014, 15(8): 634-642.

@article{title="The role of humic acid in stabilizing fullerene (C60) suspensions",
author="Lu-qing Zhang, Yu-kun Zhang, Xiu-chun Lin, Kun Yang, Dao-hui Lin",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="634-642",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400115"
}

%0 Journal Article
%T The role of humic acid in stabilizing fullerene (C60) suspensions
%A Lu-qing Zhang
%A Yu-kun Zhang
%A Xiu-chun Lin
%A Kun Yang
%A Dao-hui Lin
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 634-642
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400115

TY - JOUR
T1 - The role of humic acid in stabilizing fullerene (C60) suspensions
A1 - Lu-qing Zhang
A1 - Yu-kun Zhang
A1 - Xiu-chun Lin
A1 - Kun Yang
A1 - Dao-hui Lin
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 634
EP - 642
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400115


Abstract: 
natural organic matter (NOM) has a profound effect on the colloidal stability of discharged C60 nanoparticles in the water environment, which influences the environmental behaviors and risks of C60 and therefore merits more specific studies. This study investigates the effects of humic acid (HA), as a model NOM, on the aqueous stabilization of C60 powder and the colloidal stability of a previously suspended C60 suspension (aqu/nC60) with variations of pH values and ionic strengths. Our results reveal that HA could disperse C60 powder in water to some degree, but was unable to stably suspend them. The aqu/nC60 could remain stable at pH>4 but was destabilized at lower pH values. However, the colloidal stability of aqu/nC60 in the presence of HA was insensitive to pH 3–11, owing to the adsorption of HA onto nC60 and the increased electrosteric repulsions among nC60 aggregates. The colloidal stability of aqu/nC60, with and without HA, decreased as we increased the valence and concentration of the added cations. HA was found to mitigate the destabilization effect of Na+ on the colloidal stability of aqu/nC60 by increasing the critical coagulation concentration (CCC) of Na+, while HA lowered the CCCs of Ca2+ and La3+ probably by the bridging effect of nC60 with HA aggregates formed through the intermolecular bridging of the HA macromolecules via cation complexation at high concentrations of cations with high valences.

腐殖酸对富勒烯C60的悬浮作用

研究目的:腐殖酸(HA)对富勒烯(C60)粉末的悬浮作用以及pH、离子强度对HA-C60悬浮性能的影响。
创新要点:研究水质条件对C60悬浮性能的影响。
研究方法:测定C60粉末在HA溶液中的zeta电位,水力学粒径和悬浮浓度;HA存在下,C60悬浮体系的zeta电位与水力学粒径随pH的变化及C60悬浮体系团聚动力学随离子强度的变化。
重要结论:HA对C60粉末起到一定的分散作用,但不能使其长时间稳定悬浮于水中。当pH〈4时,C60水悬液开始沉淀;而当HA存在时,C60水悬液在pH3-11范围内都保持稳定,这是由于HA吸附于C60表面,通过静电排斥和空间位阻作用,促进C60分散悬浮。C60水悬液的稳定性随盐离子价位和浓度升高而降低。HA会抑制Na+对C60水悬液的脱稳作用;但高价离子Ca2+和La3+存在时,HA与C60之间会发生桥联从而促进C60水悬液脱稳沉淀。
富勒烯;腐殖酸;胶体稳定性;天然有机质;纳米材料

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bhatt, I., Tripathi, B.N., 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82(3):308


[2] Britto, R.S., Garcia, M.L., Rocha, A.M., 2012. Effects of carbon nanomaterials fullerene C60 and fullerol C60(OH)18–22 on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation. Aquatic Toxicology, 114-115:80-87. 


[3] Chen, K.L., Elimelech, M., 2006. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22(26):10994-11001. 


[4] Chen, K.L., Elimelech, M., 2007. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309(1):126-134. 


[5] Chen, K.L., Mylon, S.E., Elimelech, M., 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental Science & Technology, 40(5):1516-1523. 


[6] Colvin, V.L., 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10):1166-1170. 


[7] Deguchi, S., Alargova, R.G., Tsujii, K., 2001. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir, 17(19):6013-6017. 


[8] Duncan, L.K., Jinschek, J.R., Vikesland, P.J., 2008. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface, charge. Environmental Science & Technology, 42(1):173-178. 


[9] Hwang, Y.S., Li, Q.L., 2010. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Environmental Science & Technology, 44(8):3008-3013. 


[10] Hyung, H., Kim, J.H., 2009. Dispersion of C60 in natural water and removal by conventional drinking water treatment processes. Water Research, 43(9):2463-2470. 


[11] Isaacson, C.W., Bouchard, D.C., 2010. Effects of humic acid and sunlight on the generation and aggregation state of aqu/C60 nanoparticles. Environmental Science & Technology, 44(23):8971-8976. 


[12] Kim, K., Jang, M., Kim, J., 2010. Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Science of The Total Environment, 408(22):5606-5612. 


[13] Kim, K.T., Jang, M.H., Kim, J.Y., 2012. Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter. Science of The Total Environment, 426:423-429. 


[14] Li, M.H., Huang, C.P., 2010. Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid. Carbon, 48(15):4527-4534. 


[15] Li, Q.L., Xie, B., Wang, Y.S., 2009. Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight. Environmental Science & Technology, 43(10):3574-3579. 


[16] Lin, D.H., Liu, N., Yang, K., 2009. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 47(12):2875-2882. 


[17] Lin, D.H., Liu, N., Yang, K., 2010. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environmental Pollution, 158(5):1270-1274. 


[18] Lin, D.H., Li, T.T., Yang, K., 2012. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties. Journal of Hazardous Materials, 241-242:404-410. 


[19] Lin, D.H., Tian, X.L., Li, T.T., 2012. Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes. Environmental Pollution, 167:138-147. 


[20] Mashayekhi, H., Ghosh, S., Du, P., 2012. Effect of natural organic matter on aggregation behavior of C60 fullerene in water. Journal of Colloid and Interface Science, 374(1):111-117. 


[21] Nakamura, E., Isobe, H., 2003. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Accounts of Chemical Research, 36(11):807-815. 


[22] Navarro, D.A., Kookana, R.S., Kirby, J.K., 2013. Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils. Journal of Hazardous Materials, 262:496-503. 


[23] Nel, A., Xia, T., Madler, L., 2006. Toxic potential of materials at the nanolevel. Science, 311(5761):622-627. 


[24] Oberdrster, E., Zhu, S.Q., Blickley, T.M., 2006. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon, 44(6):1112-1120. 


[25] Qu, X.L., Hwang, Y.S., Alvarez, P.J., 2010. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC60) nanoparticles. Environmental Science & Technology, 44(20):7821-7826. 


[26] Takada, H., Kokubo, K., Matsubayashi, K., 2006. Antioxidant activity of supramolecular water-soluble fullerene evaluated by β-carotene bleachingassay. Bioscience, Biotechnology, and Biochemistry, 70(12):3088-3093. 


[27] Tian, X.L., Zhou, S., He, X., 2010. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Environmental Science & Technology, 44(21):8144-8149. 


[28] van Wezel, A.P., Moriniere, V., Emke, E., 2011. Quantifying summed fullerene nC60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples. Environment International, 37(6):1063-1067. 


[29] Xie, B., Xu, Z.H., Guo, W.H., 2008. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Environmental Science & Technology, 42(8):2853-2859. 


[30] Yang, Y.K., Nakada, N., Nakajima, R., 2013. pH, ionic strength and dissolved organic matter alter aggregation of fullerene C60 nanoparticles suspensions in wastewater. Journal of Hazardous Materials, 244-245:582-587. 


[31] Zhang, W., Rattanaudompol, U., Li, H., 2013. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Water Research, 47(5):1793-1802. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE