Full Text:   <3621>

Summary:  <1706>

CLC number: O346.2

On-line Access: 2015-11-04

Received: 2014-10-22

Revision Accepted: 2015-03-01

Crosschecked: 2015-10-16

Cited: 2

Clicked: 3974

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shan-qin Hou

http://orcid.org/0000-0002-8293-6894

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.11 P.885-893

http://doi.org/10.1631/jzus.A1400321


Relationship among S-N curves corresponding to different mean stresses or stress ratios


Author(s):  Shan-qin Hou, Jin-quan Xu

Affiliation(s):  1School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   jqxu@sjtu.edu.cn

Key Words:  Damage mechanics, S-N curve, Evolution law, Equivalent method, Fatigue limit


Shan-qin Hou, Jin-quan Xu. Relationship among S-N curves corresponding to different mean stresses or stress ratios[J]. Journal of Zhejiang University Science A, 2015, 16(11): 885-893.

@article{title="Relationship among S-N curves corresponding to different mean stresses or stress ratios",
author="Shan-qin Hou, Jin-quan Xu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="11",
pages="885-893",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400321"
}

%0 Journal Article
%T Relationship among S-N curves corresponding to different mean stresses or stress ratios
%A Shan-qin Hou
%A Jin-quan Xu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 11
%P 885-893
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400321

TY - JOUR
T1 - Relationship among S-N curves corresponding to different mean stresses or stress ratios
A1 - Shan-qin Hou
A1 - Jin-quan Xu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 11
SP - 885
EP - 893
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400321


Abstract: 
It is well known that the mean stress or stress ratio of fatigue loadings has a strong effect on the shape of s-N curves. An understanding of the relationships among s-N curves corresponding to different mean stresses or stress ratios would be very useful in engineering applications. In this study, based on continuum damage mechanics, a mathematical expression of an s-N curve is deduced from a new damage evolution law. This mathematical expression can well represent the whole s-N curve, not only the linear part in bi-logarithmic diagrams, but also the transitional part near the fatigue limit. The effect of mean stress on an s-N curve is represented by two state parameters. The relationships between these state parameters and the mean stress are proposed and examined. By using these relationships, the concepts of equivalent symmetric amplitude and equivalent symmetric cycles are introduced. We have found that all s-N curves under non-symmetric states can be rearranged into the same curve as that of symmetric fatigue by adopting these equivalent parameters.

不同平均应力或应力比下S-N曲线之间的关系

目的:探讨平均应力或应力比对S-N曲线的影响,并期望得到不同应力比或平均应力下统一的S-N曲线的数学形式。
方法:1. 基于Kachanov的疲劳损伤演化律,考虑循环载荷作用下高周疲劳的实际情况,提出疲劳损伤演化模型;2. 采用高镇同(1981)的实验数据,验证不同平均应力下S-N曲线的数学表达式; 3. 利用等效对称应力幅和等效对称寿命的概念,研究不同平均应力下的S-N曲线数学表达式。
结论:1. 提出任意循环比或平均应力下S-N曲线的统一数学表达式;2. 给出疲劳极限、比例系数和平均应力间的关系;3. 引入等效对称循环应力和寿命的概念,可以将任意循环比或平均应力下的疲劳等效为对称疲劳。

关键词:损伤力学;S-N曲线;演化律;等效方法;疲劳极限

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdul-Baqi, A., Schreurs, P.J.G., Geers, M.G.D., 2005. Fatigue damage modeling in solder interconnects using a cohesive zone approach. International Journal of Solids and Structures, 42(3-4):927-942.

[2]Alexopoulos, N.D., Migklis, E., Stylianos, A., et al., 2013. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 56:95-105.

[3]Avanzini, A., Donzella, G., Gallina, D., et al., 2013. Fatigue behavior and cyclic damage of peek short fiber reinforced composites. Composites Part B: Engineering, 45(1):397-406.

[4]Ayoub, G., Abdelaziz, M.N., Zairi, F., et al., 2011. A continuum damage model for the high cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading. International Journal of Solids and Structures, 48(18):2458-2466.

[5]Chamos, A.N., Charitidis, C.A., Skarmoutsou, A., et al., 2010. An investigation on the high stress sensitivity of fatigue life of rolled AZ31 magnesium alloy under constant amplitude fatigue loading. Fatigue & Fracture of Engineering Materials & Structures, 33(4):252-265.

[6]Cusumano, J.P., Chatterjee, A., 2000. Steps towards a qualitative dynamics of damage evolution. International Journal of Solids and Structures, 37(44):6397-6417.

[7]Deng, G.J., Tu, S.T., Wang, Q.Q., et al., 2014. Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels. International Journal of Fatigue, 64:14-21.

[8]El Sawi, I., Fawaz, Z., Zitoune, R., et al., 2014. An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates. Journal of Materials Science, 49(5):2338-2346.

[9]Gao, Z.T., 1981. A Handbook on Fatigue Properties of Aeronautical Material. Beijing Material Research Institute, Beijing, China, p.45-223 (in Chinese).

[10]Gerber, H., 1874. Bestimung der zulassigen spannungen in Eisen-konstructionzen. Zeischrift des Bayerischen Architeckten und Ingenieur-vereins, 6:101-110 (in German).

[11]Goodman, J., 1899. Mechanics Applied to Engineering. Longman, London.

[12]Han, Z.Y., Huang, X.G., Cao, Y.G., et al., 2014. A nonlinear cumulative evolution model for corrosion fatigue damage. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(6):447-453.

[13]Huang, X.G., Xu, J.Q., 2013. 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):292-299.

[14]Humayun Kabir, S.M., Yeo, T.I., 2014. Evaluation of an energy-based fatigue approach considering mean stress effects. Journal of Mechanical Science and Technology, 28(4):1265-1275.

[15]Jabbado, M., Maitournam, M.H., 2008. A high-cycle fatigue life model for variable amplitude multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 31(1):67-75.

[16]Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht, the Netherlands, p.138.

[17]Kravchenko, S.G., Kravchenko, O.G., Sun, C.T., 2014. A two-parameter fracture mechanics model for fatigue crack growth in brittle materials. Engineering Fracture Mechanics, 119:132-147.

[18]Lee, Y.L., Barkey, M.E., Kang, H.T., 2012. Metal Fatigue Analysis Handbook. Elsevier, Oxford, p.383-460.

[19]Liu, J., Zhang, F., 2012. Fatigue life prediction of composite laminate. Advanced Materials Research, 472-475: 591-595.

[20]Milašinović, D.D., 2003. Rheological–dynamical analogy: modeling of fatigue behavior. International Journal of Solids and Structures, 40(1):181-217.

[21]Morel, F., 2001. A critical plane fatigue model applied to out-of-phase bending and torsion load conditions. Fatigue & Fracture of Engineering Materials & Structures, 24(3):153-164.

[22]Mutoh, Y., Xu, J.Q., 2003. Fracture mechanics approach to fretting fatigue and problems to be solved. Tribology International, 36(2):99-107.

[23]Peng, L.M., Fu, P.H., Li, Z.M., 2014. High cycle fatigue properties of cast Mg-xNd-0.2Zn-Zr alloys. Journal of Materials Science, 49(20):7105-7115.

[24]Soppa, E.A., Kohler, C., Roos, E., 2014. Fatigue mechanisms in an austenitic steel under cyclic loading: experiments and atomistic simulations. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 597:128-138.

[25]Stephens, R.I., Fuchs, H.O., 2001. Metal Fatigue in Engineering. Wiley, New York, p.59-122.

[26]Verreman, Y., Guo, H., 2007. High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading. Fatigue and Fracture of Engineering Materials and Structures, 30(10):932-946.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE