CLC number: TU528.57
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 7072
MADHAVAN Pillai T.M., VEENA G.. Fatigue reliability analysis of fixed offshore structures: A first passage problem approach[J]. Journal of Zhejiang University Science A, 2006, 7(11): 1839-1845.
@article{title="Fatigue reliability analysis of fixed offshore structures: A first passage problem approach",
author="MADHAVAN Pillai T.M., VEENA G.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="11",
pages="1839-1845",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1839"
}
%0 Journal Article
%T Fatigue reliability analysis of fixed offshore structures: A first passage problem approach
%A MADHAVAN Pillai T.M.
%A VEENA G.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 11
%P 1839-1845
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1839
TY - JOUR
T1 - Fatigue reliability analysis of fixed offshore structures: A first passage problem approach
A1 - MADHAVAN Pillai T.M.
A1 - VEENA G.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 11
SP - 1839
EP - 1845
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1839
Abstract: This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The problem is coined as a “first passage problem”. The method was illustrated through application to a typical plane frame structure. The fatigue reliability degradation curve established can be used for planning in-service inspection of offshore platforms. A very limited parametric study was carried out to obtain insight into the effect of important variables on the fatigue reliability.
[1] Borgman, A., 1969. Ocean wave simulation for engineering design. Journal ASCE, Waterways and Harbors Div., 95(WW4):557-583.
[2] Chakrabarti, S.K., 1987. Hydrodynamics of Structures. Springler Verlag, Berlin.
[3] Karsan, D.I., Kumar, A., 1990. Fatigue failure paths for offshore platform inspection. Journal of Structural Engineering, ASCE, 116(6):1679-1695.
[4] Kirkemo, F., 1988. Application of probabilistic fracture mechanics to offshore structures. Applied Mechanics Review, ASME, 41(2):61-84.
[5] Lin, Y.K., 1976. Probabilistic Theory of Structural Dynamics. Robert E. Kneiger Publishing Company, New York.
[6] Madhavan Pillai, T.M., Meher Prasad, A., 2000. Fatigue reliability analysis in time domain for inspection strategy of fixed offshore structures. Journal of Ocean Engineering, 27(2):167-186.
[7] Madsen, H.O., Krenk, S., Lind, N.C., 1986. Methods of Structural Safety. Prentice Hall, Englewood, Cliffs, NJ.
[8] Nigam, N.C., 1983. Introduction to Random Vibrations. The MIT Press, Cambridge, USA.
[9] Rajasankar, J., Iyer, N.R., Appa Rao, T.V.S.R., 2003. Structural integrity assessment of offshore tubular joints based on reliability analysis. International Journal of Fatigue, 25(7):609-619.
[10] Sarpkaya, T., Isaacson, M., 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold Co., New York.
[11] Vughts, J.H., Kinra, R.K., 1976. Probabilistic Fatigue Analysis of Fixed Offshore Structures. Proceedings of Offshore Technology Conference, OTC 2608, p.889-906.
[12] Wheeler, J.D., 1969. Methods of Calculating Forces Produced by Irregular Waves. Proceedings of Offshore Technology Conference, OTC 1006, p.72-82.
[13] Wirsching, P.H., Light, M.C., 1980. Fatigue under Wideband Random Stresses. Journal of Structural Engineering, ASCE, 106(7):1593-1607.
Open peer comments: Debate/Discuss/Question/Opinion
<1>