Full Text:   <3116>

Summary:  <2174>

CLC number: TU441

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-04-11

Cited: 0

Clicked: 5115

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Dan-da Shi

http://orcid.org/0000-0002-5670-4037

Jian-feng Xue

http://orcid.org/0000-0001-6380-1188

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.5 P.346-362

http://doi.org/10.1631/jzus.A1600689


Effect of bedding direction of oval particles on the behavior of dense granular assemblies under simple shear


Author(s):  Dan-da Shi, Jian-feng Xue, Zhen-ying Zhao, Yan-cheng Yang

Affiliation(s):  School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; more

Corresponding email(s):   jianfeng.xue@adfa.edu.au

Key Words:  Initial fabric anisotropy, Particle orientation, Simple shear, Non-coaxiality, Discrete element method (DEM)



Abstract: 
initial fabric anisotropy can greatly affect the shear behavior of particulate materials during shear. The bedding plane effect induced by particle orientation is one of the main fabric anisotropic factors that may affect other factors. It is hard to experimentally examine the effect of bedding direction of particles on the shear behavior of particulate materials, such as sand. A 2D discrete element method (DEM) is employed in this paper to study the influence of different orientations of oval particles on the behavior of dense assemblies under simple shear. As well as the macroscopic shear behavior, the evolution of particle orientation, contact normal, and inter-particle contact forces within the samples with different initial bedding angles during shear have been extensively examined. It was found that the initial bedding direction of the particles has great influence on the non-coaxiality between the directions of principal stress and principal strain increment. The bedding direction also affects the strength and dilatancy responses of DEM samples subjected to simple shear, and the samples with larger bedding angles exhibit higher shear strength and larger volume dilation. A modified stress-force-fabric relationship is proposed to describe the effect of particle bedding direction on the shear strength of samples, and the new equation can better describe the stress-force-fabric relationship of assemblies with initial anisotropic fabrics compared with the existing model.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE