Full Text:   <711>

Summary:  <75>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-02-28

Received: 2024-01-21

Revision Accepted: 2024-05-11

Crosschecked: 2025-02-28

Cited: 0

Clicked: 1294

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao SHEN

https://orcid.org/0000-0002-6950-4149

Jianxin ZHU

https://orcid.org/0000-0001-7577-2070

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.2 P.138-150

http://doi.org/10.1631/jzus.A2400040


Parameter matching and optimization of hybrid excavator swing system


Author(s):  Chao SHEN, Jianxin ZHU, Jian CHEN, Saibai LI, Lixin YI

Affiliation(s):  State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; more

Corresponding email(s):   zjianx-918@163.com

Key Words:  Hybrid system, Energy regeneration, Swing braking energy, Parameter optimization, Improved multi-objective particle swarm optimization (IMOPSO), Adaptive grid


Chao SHEN, Jianxin ZHU, Jian CHEN, Saibai LI, Lixin YI. Parameter matching and optimization of hybrid excavator swing system[J]. Journal of Zhejiang University Science A, 2025, 26(2): 138-150.

@article{title="Parameter matching and optimization of hybrid excavator swing system",
author="Chao SHEN, Jianxin ZHU, Jian CHEN, Saibai LI, Lixin YI",
journal="Journal of Zhejiang University Science A",
volume="26",
number="2",
pages="138-150",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400040"
}

%0 Journal Article
%T Parameter matching and optimization of hybrid excavator swing system
%A Chao SHEN
%A Jianxin ZHU
%A Jian CHEN
%A Saibai LI
%A Lixin YI
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 2
%P 138-150
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400040

TY - JOUR
T1 - Parameter matching and optimization of hybrid excavator swing system
A1 - Chao SHEN
A1 - Jianxin ZHU
A1 - Jian CHEN
A1 - Saibai LI
A1 - Lixin YI
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 2
SP - 138
EP - 150
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400040


Abstract: 
In this study, a novel synergistic swing energy-regenerative hybrid system (SSEHS) for excavators with a large inertia slewing platform is constructed. With the SSEHS, the pressure boosting and output energy synergy of multiple energy sources can be realized, while the swing braking energy can be recovered and used by means of hydraulic energy. Additionally, considering the system constraints and comprehensive optimization conditions of energy efficiency and dynamic characteristics, an improved multi-objective particle swarm optimization (IMOPSO) combined with an adaptive grid is proposed for parameter optimization of the SSEHS. Meanwhile, a parameter rule-based control strategy is designed, which can switch to a reasonable working mode according to the real-time state. Finally, a physical prototype of a 50-t excavator and its AMESim model is established. The semi-simulation and semi-experiment results demonstrate that compared with a conventional swing system, energy consumption under the 90° rotation condition could be reduced by about 51.4% in the SSEHS before parameter optimization, while the energy-saving efficiency is improved by another 13.2% after parameter optimization. This confirms the effectiveness of the SSEHS and the IMOPSO parameter optimization method proposed in this paper. The IMOPSO algorithm is universal and can be used for parameter matching and optimization of hybrid power systems.

混合动力挖掘机回转系统的参数匹配与优化

作者:沈超1,2,朱建新1,2,陈健1,李赛白2,易李欣1,2
机构:1中南大学,极端服役性能精准制造全国重点实验室,中国长沙,410083;2山河智能装备股份有限公司,国家企业研发中心,中国长沙,410100
目的:挖掘机等工程机械的回转系统在回转加速-制动过程中存在严重的溢流能量损失。本文旨在探究混合动力回转节能系统及其参数匹配、优化方法,以获得综合性能最优的系统参数组合,实现回转能量高效回收再利用,降低回转系统能耗。
创新点:1.提出一种耦合式回转能量再生混合动力系统(SSEHS),并阐述其工作原理和节能机制;2.考虑系统多目标优化和条件约束,设计多目标优化粒子群算法,获得综合性能最优的参数组合方案;3.基于物理样机测试数据,建立仿真模型,证实节能系统和算法有效性。
方法:1.基于挖掘机传统液压回转系统和液压储能原理,构建耦合式回转能量再生混合动力系统;2.通过理论推导,设计一种基于自适应网格的改进多目标粒子群(IMOPSO)算法,计算得到综合性能最优的系统参数组合;3.根据节能系统结构和工作原理,设计基于参数规则的控制策略;4.通过物理样机数据和仿真模拟,验证所提回转节能系统和参数优化方法的可行性和有效性。
结论:1.与传统回转系统相比,所提回转节能系统回转加速过程中显著减小主泵所需输出压力;2.所提回转节能系统能耗降低约51.4%,参数优化后节能效率又提高13.2%;3.与传统回转系统相比,所提回转节能系统可降低78.3%溢流能量损失。

关键词:混合动力系统;能量再生;回转制动能量;参数优化;自适应网格;改进多目标粒子群算法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdel-baqiO, NasiriA, MillerP, 2015. Dynamic performance improvement and peak power limiting using ultracapacitor storage system for hydraulic mining shovels. IEEE Transactions on Industrial Electronics, 62(5):‍3173-3181.

[2]BorthakurS, SubramanianSC, 2019. Design and optimization of a modified series hybrid electric vehicle powertrain. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(6):1419-1435.

[3]ChenQH, LinTL, RenHL, 2018. Parameters optimization and control strategy of power train systems in hybrid hydraulic excavators. Mechatronics, 56:16-25.

[4]ClercM, KennedyJ, 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58-73.

[5]DoTC, DangTD, DinhTQ, et al., 2021. Developments in energy regeneration technologies for hydraulic excavators: a review. Renewable and Sustainable Energy Reviews, 145:111076.

[6]GongJ, ZhangDQ, LiuCS, et al., 2019a. Optimization of electro-hydraulic energy-savings in mobile machinery. Automation in Construction, 98:132-145.

[7]GongJ, ZhangDQ, GuoY, et al., 2019b. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system. Applied Energy, 233-234:724-734.

[8]GongJ, ZhangDQ, GuoY, et al., 2020. Potential energy recovery method based on alternate recovery and utilization of multiple hydraulic cylinders. Automation in Construction, 112:103105.

[9]HagaM, HiroshiW, FujishimaK, 2001. Digging control system for hydraulic excavator. Mechatronics, 11(6):665-676.

[10]HillmanBJ, ZhangJ, TognettiLC, et al., 2016. Hydraulic Control System Having Swing Motor Energy Recovery. US Patent 9388828.

[11]HoTH, AhnKK, 2012. Design and control of a closed-loop hydraulic energy-regenerative system. Automation in Construction, 22:444-458.

[12]KwonTS, LeeSW, SulSK, et al., 2010. Power control algorithm for hybrid excavator with supercapacitor. IEEE Transactions on Industry Applications, 46(4):1447-1455.

[13]LatasW, StojekJ, 2018. A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system. Energy, 153:836-848.

[14]LinTL, LiuQ, 2013. Method of parameter matching for hydraulic hybrid system for excavators. Journal of Shanghai Jiaotong University, 47(5):728-733 (in Chinese).

[15]LinTL, YangJ, LiuQ, et al., 2013. Simulation study on a rotary driving system in hydraulic excavator. Journal of Huaqiao University (Natural Science), 34(3):247-252 (in Chinese).

[16]LinTL, YeYY, FuSJ, et al., 2014. Energy-saving system of swing for hydraulic excavators based on electric energy recovery technology. China Journal of Highway and Transport, 27(8):120-126 (in Chinese).

[17]LinTL, ChenQ, RenHL, et al., 2017. Review of boom potential energy regeneration technology for hydraulic construction machinery. Renewable and Sustainable Energy Reviews, 79:358-371.

[18]LiuCS, HeQH, GongJ, et al., 2016. Modeling and experimental research on rotary braking energy recovery system of hybrid excavator. Journal of Central South University (Science and Technology), 47(5):‍1533-1542 (in Chinese).

[19]PoliR, KennedyJ, BlackwellT, 2007. Particle swarm optimization: an overview. Swarm Intelligence, 1(1):33-57.

[20]PrasanthiA, ShareefH, AsnaM, et al., 2021. Optimization of hybrid energy systems and adaptive energy management for hybrid electric vehicles. Energy Conversion and Management, 243:114357.

[21]QuSY, FassbenderD, VaccaA, et al., 2021. A high-efficient solution for electro-hydraulic actuators with energy regeneration capability. Energy, 216:119291.

[22]ShangTL, ZhangJ, MaPF, 2014. Hydraulic Control System Having Energy Recovery. US Patent 8726645.

[23]SuppapitnarmA, SeffenKA, ParksGT, et al., 2000. A simulated annealing algorithm for multi-objective optimization. Engineering Optimization, 33(1):59-85.

[24]ThompsonB, YoonHS, KimJ, et al., 2014. Swing Energy Recuperation Scheme for Hydraulic Excavators. SAE Technical Paper No. 2014-01-2402, SAE International, Warrendale, USA.

[25]TongZM, WuSS, TongSG, et al., 2020. Energy-saving technologies for construction machinery: a review of electro-hydraulic pump-valve coordinated system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(5):331-349.

[26]TongZM, MiaoJZ, LiYS, et al., 2021. Development of electric construction machinery in China: a review of key technologies and future directions. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(4):245-264.

[27]WangHM, WangQF, 2020. Parameter matching and control of series hybrid hydraulic excavator based on electro-hydraulic composite energy storage. IEEE Access, 8:111899-111912.

[28]WangHM, WangQF, HuBZ, 2017. A review of developments in energy storage systems for hybrid excavators. Automation in Construction, 80:1-10.

[29]WeiLX, NingZQ, QuanL, et al., 2022. Research on parameter matching of the asymmetric pump potential energy recovery system based on multi-core parallel optimization method. Processes, 10(11):2298.

[30]XiaLP, QuanL, GeL, et al., 2018. Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom. Energy Conversion and Management, 156:680-687.

[31]YuYX, AhnKK, 2020a. Improvement of energy regeneration for hydraulic excavator swing system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1):53-67.

[32]YuYX, AhnKK, 2020b. Energy regeneration and reuse of excavator swing system with hydraulic accumulator. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4):859-873.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE