Full Text:   <1506>

Summary:  <64>

CLC number: 

On-line Access: 2026-01-26

Received: 2025-08-27

Revision Accepted: 2025-10-21

Crosschecked: 2026-01-27

Cited: 0

Clicked: 708

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Feifei YANG

https://orcid.org/0000-0002-1649-1225

Xinlin SONG

https://orcid.org/0000-0001-5467-544X

Huiping YIN

https://orcid.org/0000-0001-8236-0621

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2026 Vol.27 No.1 P.76-86

http://doi.org/10.1631/jzus.A2500400


Design and energy function determination of a memristor-coupled circuit representing a two-dimensional chaotic map


Author(s):  Feifei YANG, Xinlin SONG, Jia HE, Huiping YIN

Affiliation(s):  College of Artificial Intelligence and Computer Science, Xian University of Science and Technology, Xian 710054, China; more

Corresponding email(s):   xinlinsong@xust.edu.cn

Key Words:  Modulation coupling, Chaotic map, Dynamics analysis, Energy function, Memristor circuit


Share this article to: More <<< Previous Article|

Feifei YANG, Xinlin SONG, Jia HE, Huiping YIN. Design and energy function determination of a memristor-coupled circuit representing a two-dimensional chaotic map[J]. Journal of Zhejiang University Science A, 2026, 27(1): 76-86.

@article{title="Design and energy function determination of a memristor-coupled circuit representing a two-dimensional chaotic map",
author="Feifei YANG, Xinlin SONG, Jia HE, Huiping YIN",
journal="Journal of Zhejiang University Science A",
volume="27",
number="1",
pages="76-86",
year="2026",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500400"
}

%0 Journal Article
%T Design and energy function determination of a memristor-coupled circuit representing a two-dimensional chaotic map
%A Feifei YANG
%A Xinlin SONG
%A Jia HE
%A Huiping YIN
%J Journal of Zhejiang University SCIENCE A
%V 27
%N 1
%P 76-86
%@ 1673-565X
%D 2026
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500400

TY - JOUR
T1 - Design and energy function determination of a memristor-coupled circuit representing a two-dimensional chaotic map
A1 - Feifei YANG
A1 - Xinlin SONG
A1 - Jia HE
A1 - Huiping YIN
J0 - Journal of Zhejiang University Science A
VL - 27
IS - 1
SP - 76
EP - 86
%@ 1673-565X
Y1 - 2026
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500400


Abstract: 
The modeling and dynamical analysis of discrete chaotic systems is a vital research field, and various chaotic maps have been developed using mathematical and control-theoretic approaches. However, physical circuit design of mathematically defined discrete chaotic systems and the computation of their energy functions remain challenging and open problems. In this study, a two-dimensional (2D) chaotic map is constructed using an open-loop modulation coupling method, and its dynamical characteristics are analyzed using bifurcation diagrams. Lyapunov exponents (LEs) and spectral entropy (SE) complexity are also inspected under different parameter configurations. Furthermore, the proposed chaotic map is expressed using two distinct physical memristive circuits: one is composed of a magnetic flux-controlled memristor, a nonlinear resistor, and a capacitor; the other utilizes a charge-controlled memristor, a nonlinear resistor, and an inductor. Moreover, two energy functions are derived from the two memristor-coupled circuits for the proposed chaotic map. The results demonstrate that the mathematical model of the discrete chaotic system can be effectively expressed through these two nonlinear circuits. Our study offers a theoretical foundation and viable methodology for the physical circuit representation of discrete chaotic systems and determination of their energy functions.

一个二维混沌映射的忆阻耦合电路设计与能量函数确定

作者:杨飞飞1,宋欣林2,何佳1,尹慧平1
机构:1西安科技大学,人工智能与计算机学院,中国西安,710054;2西安科技大学,理学院,中国西安,710054
目的:从物理角度研究一般混沌映射的忆阻电路实现及其能量函数的确定方法。
创新点:1.通过开环调制耦合方法构建一个混沌映射;2.给出混沌映射的两种忆阻耦合电路;3.提出混沌映射的能量函数确定方法。
方法:1.利用物理电子元件的量纲定义,推导出混沌映射的量纲振子模型;2.以两类忆阻器分别耦合电感型和电容型器件,设计两类忆阻电路;3.通过忆阻电路元件的物理场能与对应的无量纲能量函数确定混沌映射的能量函数。
结论:1.混沌映射可以等效为不同电子元件量纲对应的不同量纲模型;2.混沌映射中的高阶非线性项可以利用非线性电阻等效;3.混沌映射交叉项可以利用两类忆阻器表达;4.混沌映射的能量函数可以通过对应的忆阻耦合电路的物理场能量确定;5.准确的非线性电路能够判断混沌映射的可靠性。

关键词:调制耦合;混沌映射;动力学分析;能量函数;忆阻电路

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AkraamM, RashidT, ZafarS, 2023. A chaos-based image encryption scheme is proposed using multiple chaotic maps. Mathematical Problems in Engineering, 2023(1):2003724.

[2]AlexanW, ChenYL, PorLY, et al., 2023a. Hyperchaotic maps and the single neuron model: a novel framework for chaos-based image encryption. Symmetry, 15(5):1081.

[3]AlexanW, AlexanN, GabrM, 2023b. Multiple-layer image encryption utilizing fractional-order chen hyperchaotic map and cryptographically secure prngs. Fractal and Fractional, 7(4):287.

[4]BaoH, HuaZY, LiHZ, et al., 2021. Discrete memristor hyperchaotic maps. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(11):4534-4544.

[5]ChenYX, YangFF, WangCN, 2025. Coherence resonance in a memristive map neuron and adaptive energy regulation. Modern Physics Letters B, 39(17):2550008.

[6]GabrM, KorayemY, ChenYL, et al., 2023. R3—rescale, rotate, and randomize: a novel image cryptosystem utilizing chaotic and hyper-chaotic systems. IEEE Access, 11:119284-119312.

[7]GabrM, DiabA, ElshoushHT, et al., 2024. Data security utilizing a memristive coupled neural network in 3D models. IEEE Access, 12:116457-116477.

[8]GaoS, ZhangZY, IuHHC, et al., 2025. A parallel color image encryption algorithm based on a 2-D Logistic-Rulkov neuron map. IEEE Internet of Things Journal, 12(11):18115-18124.

[9]GuoYT, XieY, MaJ, 2023. How to define energy function for memristive oscillator and map. Nonlinear Dynamics, 111(23):21903-21915.

[10]GuoYT, MaJ, ZhangXF, et al., 2024. Memristive oscillator to memristive map, energy characteristic. Science China Technological Sciences, 67(5):1567-1578.

[11]HuaZY, ZhouYC, PunCM, et al., 2015. 2D sine logistic modulation map for image encryption. Information Sciences, 297:80-94.

[12]IbarzB, CasadoJM, SanjuánMAF, 2011. Map-based models in neuronal dynamics. Physics Reports, 501(1-2):1-74.

[13]JacksonJ, PerumalR, 2025. A robust image encryption technique based on an improved fractional order chaotic map. Nonlinear Dynamics, 113(7):7277-7296.

[14]JiaJN, WangCN, ZhangXF, et al., 2024. Energy and self-adaption in a memristive map neuron. Chaos, Solitons & Fractals, 182:114738.

[15]LaiQ, LiuY, 2023. A cross-channel color image encryption algorithm using two-dimensional hyperchaotic map. Expert Systems with Applications, 223:119923.

[16]LeiZ, MaJ, 2025. Coherence resonance and energy dynamics in a memristive map neuron. Chaos, 35(2):023158.

[17]LiKS, WangQ, HuCY, et al., 2024. Dynamical analysis of a novel 2D Lyapunov exponent controllable memristive chaotic map. Chaos, 34(8):083135.

[18]LiLZ, 2024. A novel chaotic map application in image encryption algorithm. Expert Systems with Applications, 252:124316.

[19]LiYN, LvM, MaJ, et al., 2024. A discrete memristive neuron and its adaptive dynamics. Nonlinear Dynamics, 112(9):7541-7553.

[20]LiuXC, MouJ, ZhangYS, et al., 2024. A new hyperchaotic map based on discrete memristor and meminductor: dynamics analysis, encryption application, and DSP implementation. IEEE Transactions on Industrial Electronics, 71(5):5094-5104.

[21]LuoLQ, FlanaganJG, 2007. Development of continuous and discrete neural maps. Neuron, 56(2):284-300.

[22]MaML, YangY, QiuZC, et al., 2022. A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dynamics, 107(3):2935-2949.

[23]MaYJ, TianY, ZhangL, et al., 2024. Two-dimensional hyperchaotic effect coupled mapping lattice and its application in dynamic S-box generation. Nonlinear Dynamics, 112(19):17445-17476.

[24]MuniSS, FatoyinboHO, GhoshI, 2022. Dynamical effects of electromagnetic flux on Chialvo neuron map: nodal and network behaviors. International Journal of Bifurcation and Chaos, 32(9):2230020.

[25]NarayananR, JohnstonD, 2012. Functional maps within a single neuron. Journal of Neurophysiology, 108(9):2343-2351.

[26]PengYX, SunKH, HeSB, 2020. Dynamics analysis of chaotic maps: from perspective on parameter estimation by meta-heuristic algorithm. Chinese Physics B, 29(3):030502.

[27]PengYX, HeSB, SunKH, 2021. A higher dimensional chaotic map with discrete memristor. AEU-International Journal of Electronics and Communications, 129:153539.

[28]PengYX, LanZX, SunKH, et al., 2023. A simple color image encryption algorithm based on a discrete memristive hyperchaotic map and time-controllable operation. Optics & Laser Technology, 165:109543.

[29]RamakrishnanB, MehrabbeikM, ParasteshF, et al., 2022. A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics, 11(1):153.

[30]SamehSM, MoustafaHED, AbdelhayEH, et al., 2024. An effective chaotic maps image encryption based on metaheuristic optimizers. The Journal of Supercomputing, 80(1):141-201.

[31]TutuevaAV, NepomucenoEG, KarimovAI, et al., 2020. Adaptive chaotic maps and their application to pseudo-random numbers generation. Chaos, Solitons & Fractals, 133:109615.

[32]UmarT, NadeemM, AnwerF, 2024. A new modified Skew Tent Map and its application in pseudo-random number generator. Computer Standards & Interfaces, 89:103826.

[33]VermaV, KumarS, 2025. Quantum image encryption algorithm based on 3D-BNM chaotic map. Nonlinear Dynamics, 113(4):3829-3855.

[34]WangBC, ZhangXF, ZhuZG, et al., 2024. A new memristive map neuron, self-regulation and coherence resonance. The European Physical Journal B, 97(8):124.

[35]WangC, ChongZL, ZhangHL, et al., 2024. Color image encryption based on discrete memristor logistic map and DNA encoding. Integration, 96:102138.

[36]WangP, WangQ, SangHW, et al., 2025. Dynamic analysis of a novel 3D chaotic map with two internal frequencies. Scientific Reports, 15(1):5952.

[37]WangZ, ParasteshF, NatiqH, et al., 2024. Synchronization patterns in a network of diffusively delay-coupled memristive Chialvo neuron map. Physics Letters A, 514-515:129607.

[38]WuWQ, ZhouJP, 2024. Constructing new high-order polynomial chaotic maps and application in pseudorandom number generator. Physica Scripta, 99(3):035238.

[39]XiangQ, ShenYZ, PengSS, et al., 2024. A two-dimensional discrete memristor map: analysis and implementation. International Journal of Bifurcation and Chaos, 34(10):2450124.

[40]XuQ, HuangLP, WangN, et al., 2023. Initial-offset-boosted coexisting hyperchaos in a 2D memristive Chialvo neuron map and its application in image encryption. Nonlinear Dynamics, 111(21):20447-20463.

[41]YangFF, ZhouP, MaJ, 2024a. An adaptive energy regulation in a memristive map linearized from a circuit with two memristive channels. Communications in Theoretical Physics, 76(3):035004.

[42]YangFF, SongXL, MaJ, 2024b. A memristive map neuron under noisy electric field. Chinese Journal of Physics, 91:287-298.

[43]YangFF, RenLJ, MaJ, et al., 2024c. Two simple memristive maps with adaptive energy regulation and digital signal process verification. Journal of Zhejiang University-SCIENCE A, 25(5):382-394.

[44]ZhangSH, ZhangHL, WangC, 2023. Dynamical analysis and applications of a novel 2-D hybrid dual-memristor hyperchaotic map with complexity enhancement. Nonlinear Dynamics, 111(16):15487-15513.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE