Full Text:   <3768>

CLC number: Q75

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2009-03-10

Cited: 25

Clicked: 6128

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.4 P.291-300

http://doi.org/10.1631/jzus.B0820190


Identification and expression analysis of OsHsfs in rice


Author(s):  Chuang WANG, Qian ZHANG, Hui-xia SHOU

Affiliation(s):  State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   huixia@zju.edu.cn

Key Words:  Heat shock, Transcription factors, Rice, Protein structure, Expression analysis


Chuang WANG, Qian ZHANG, Hui-xia SHOU. Identification and expression analysis of OsHsfs in rice[J]. Journal of Zhejiang University Science B, 2009, 10(4): 291-300.

@article{title="Identification and expression analysis of OsHsfs in rice",
author="Chuang WANG, Qian ZHANG, Hui-xia SHOU",
journal="Journal of Zhejiang University Science B",
volume="10",
number="4",
pages="291-300",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820190"
}

%0 Journal Article
%T Identification and expression analysis of OsHsfs in rice
%A Chuang WANG
%A Qian ZHANG
%A Hui-xia SHOU
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 4
%P 291-300
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820190

TY - JOUR
T1 - Identification and expression analysis of OsHsfs in rice
A1 - Chuang WANG
A1 - Qian ZHANG
A1 - Hui-xia SHOU
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 4
SP - 291
EP - 300
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820190


Abstract: 
Heat stress transcription factors (Hsfs) are the central regulators of defense response to heat stress. We identified a total of 25 rice Hsf genes by genome-wide analysis of rice (Oryza sativa L.) genome, including the subspecies of O. japonica and O. indica. Proteins encoded by OsHsfs were divided into three classes according to their structures. Digital Northern analysis showed that OsHsfs were expressed constitutively. The expressions of these OsHsfs in response to heat stress and oxidative stress differed among the members of the gene family. Promoter analysis identified a number of stress-related cis-elements in the promoter regions of these OsHsfs. No significant correlation, however, was found between the heat-shock responses of genes and their cis-elements. Overall, our results provide a foundation for future research of OsHsfs function.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Audic, S., Claverie, J.M., 1997. The significance of digital gene expression profiles. Genome Res., 7(10):986-995.

[2] Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D., von Koskull-Döring, P., 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci., 29(4):471-487.

[3] Baniwal, S.K., Chan, K.Y., Scharf, K.D., Nover, L., 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J. Biol. Chem., 282(6):3605-3613.

[4] Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Korbitzer, A., Treuter, E., Nover, L., 2004. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 16(6):1521-1535.

[5] Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., Wang, T.T., 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol., 143(1):251-262.

[6] Czarnecka-Verner, E., Pan, S., Salem, T., Gurley, W.B., 2004. Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol. Biol., 56(1):57-75.

[7] Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M., 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol., 116(4):1351-1357.

[8] Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R., 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 17(1):268-281.

[9] Fu, S., Rogowsky, P., Nover, L., Scanlon, M.J., 2006. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Planta, 224(1):42-52.

[10] Hicks, M.R., Holberton, D.V., Kowalczyk, C., Woolfson, D.N., 1997. Coiled-coil assembly by peptides with non-heptad sequence motifs. Folding and Design, 2(3):149-158.

[11] Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T., 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res., 27(1):297-300.

[12] Jeon, J., Choi, J., Park, J., Lee, Y.H., 2008. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity. J. Zhejiang Univ. Sci. B, 9(10):747-752.

[13] Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., Scharf, K.D., 2007a. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10(3): 310-316.

[14] Kotak, S., Vierling, E., Baumlein, H., von Koskull-Döring, P., 2007b. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 19(1):182-195.

[15] Larkindale, J., Hall, J.D., Knight, M.R., Vierling, E., 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 138(2):882-897.

[16] Miller, G., Mittler, R., 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. (Lond), 98(2):279-288.

[17] Mishra, S.K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., Scharf, K.D., 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev., 16(12):1555-1567.

[18] Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K., Shigeoka, S., 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J., 48(4): 535-547.

[19] Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.D., 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 6(3): 177-189.

[20] Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA, 103(49): 18822-18827.

[21] Schramm, F., Ganguli, A., Kiehlmann, E., Englich, G., Walch, D., von Koskull-Döring, P., 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol., 60(5):759-772.

[22] Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., von Koskull-Döring, P., 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J., 53(2):264-274.

[23] Schultheiss, J., Kunert, O., Gase, U., Scharf, K.D., Nover, L., Ruterjans, H., 1996. Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Eur. J. Biochem., 236(3):911-921.

[24] Storozhenko, S., de Pauw, P., van Montagu, M., Inze, D., Kushnir, S., 1998. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol., 118(3):1005-1014.

[25] Takahashi, A., Kawasaki, T., Henmi, K., Shi, I.K., Kodama, O., Satoh, H., Shimamoto, K., 1999. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J., 17(5):535-545.

[26] Volkov, R.A., Panchuk, I.I., Mullineaux, P.M., Schoffl, F., 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol., 61(4-5):733-746.

[27] von Koskull-Döring, P., Scharf, K.D., Nover, L., 2007. The diversity of plant heat stress transcription factors. Trends Plant Sci., 12(10):452-457.

[28] Yamanouchi, U., Yano, M., Lin, H., Ashikari, M., Yamada, K., 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA, 99(11):7530-7535.

[29] Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., Oda, K., 2008. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 227(5):957-967.

[30] Zhong, M., Orosz, A., Wu, C., 1998. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol. Cell, 2(1):101-108.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE