Full Text:   <3186>

CLC number: TP2; R741

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2010-03-15

Cited: 3

Clicked: 7344

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.4 P.298-306

http://doi.org/10.1631/jzus.B0900284


Neural decoding based on probabilistic neural network


Author(s):  Yi Yu, Shao-min Zhang, Huai-jian Zhang, Xiao-chun Liu, Qiao-sheng Zhang, Xiao-xiang Zheng, Jian-hua Dai

Affiliation(s):  Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China, College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   qaas@zju.edu.cn

Key Words:  Brain-machine interfaces (BMI), Neural decoding, Probabilistic neural network (PNN), Microelectrode array


Share this article to: More <<< Previous Article|

Yi Yu, Shao-min Zhang, Huai-jian Zhang, Xiao-chun Liu, Qiao-sheng Zhang, Xiao-xiang Zheng, Jian-hua Dai. Neural decoding based on probabilistic neural network[J]. Journal of Zhejiang University Science B, 2010, 11(4): 298-306.

@article{title="Neural decoding based on probabilistic neural network",
author="Yi Yu, Shao-min Zhang, Huai-jian Zhang, Xiao-chun Liu, Qiao-sheng Zhang, Xiao-xiang Zheng, Jian-hua Dai",
journal="Journal of Zhejiang University Science B",
volume="11",
number="4",
pages="298-306",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900284"
}

%0 Journal Article
%T Neural decoding based on probabilistic neural network
%A Yi Yu
%A Shao-min Zhang
%A Huai-jian Zhang
%A Xiao-chun Liu
%A Qiao-sheng Zhang
%A Xiao-xiang Zheng
%A Jian-hua Dai
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 4
%P 298-306
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900284

TY - JOUR
T1 - Neural decoding based on probabilistic neural network
A1 - Yi Yu
A1 - Shao-min Zhang
A1 - Huai-jian Zhang
A1 - Xiao-chun Liu
A1 - Qiao-sheng Zhang
A1 - Xiao-xiang Zheng
A1 - Jian-hua Dai
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 4
SP - 298
EP - 306
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900284


Abstract: 
Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices, such as robot arms, computer cursors, and paralyzed muscles. A variety of neural decoding algorithms have been designed to explore relationships between neural activities and movements of the limbs. In this paper, two novel neural decoding methods based on probabilistic neural network (PNN) in rats were introduced, the PNN decoder and the modified PNN (MPNN) decoder. In the experiment, rats were trained to obtain water by pressing a lever over a pressure threshold. microelectrode array was implanted in the motor cortex to record neural activity, and pressure was recorded by a pressure sensor synchronously. After training, the pressure values were estimated from the neural signals by PNN and MPNN decoders. Their performances were evaluated by a correlation coefficient (CC) and a mean square error (MSE). The results show that the MPNN decoder, with a CC of 0.8657 and an MSE of 0.2563, outperformed the traditionally-used Wiener filter (WF) and Kalman filter (KF) decoders. It was also observed that the discretization level did not affect the MPNN performance, indicating that the MPNN decoder can handle different tasks in BMI system, including the detection of movement states and estimation of continuous kinematic parameters.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Brockwell, A.E., Rojas, A.L., Kass, R.E., 2004. Recursive bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol., 91(4):1899-1907.

[2]Brown, E.N., Frank, L.M, Tang, D., Quirk, M.C., Wilson, M.A., 1998. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci., 18(18):7411-7425.

[3]Carmena, J.M., Lebedev, M.A., Crist, R.E., O(Doherty, J.E., Santucci, D.M., 2003. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS. Biol., 1(2):E42.

[4]Eden, U.T., Frank, L.M., Barbieri, R., Solo, V., Brown, E.N., 2004. Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput., 16(5):971-998.

[5]Feng, Z.Y., Chen, W.D., Ye, X.S., 2007. A remote control training system for rat navigation in complicated environment. J. Zhejiang Univ.-Sci. A, 8(2):323-330.

[6]Gage, G.J., Ludwig, K.A., Otto, K.J., Ionides, E.L., Kipke, D.R., 2005. Naive coadaptive cortical control. J. Neural Eng., 2(2):52-63.

[7]Georgopoulos, A.P., Kettner, R.E., Schwartz, A.B., 1988. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci., 8(8):2928-2937.

[8]Georgopoulos, A.P., Lurito, J.T., Petrides, M., 1989. Mental rotation of the neuronal population vector. Science, 243(4888):234-236.

[9]Hatsopoulos, N., Joshi, J., O′Leary, J.G., 2004. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol., 92(2):1165-1174.

[10]Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164-171.

[11]Lebedev, M.A., Nicolelis, M.A., 2006. Brain-machine interfaces: past, present and future. Trends Neurosci., 29(9):536-546.

[12]Lebedev, M.A., Carmena, J.M., O′Doherty, J.E., 2005. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci., 25(19):4681-4693.

[13]Ministry of Health of the People’s Republic of China, 2000. Guide for Animal Experiment Technology. Ministry of Health of the People’s Republic of China, p.9-20.

[14]Nicolelis, M.A., 2003. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Rev. Neurosci., 4(5):417-422.

[15]Paxinos, G., Watson, C.R., Emson, P.C., 1980. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods, 3(2):129-149.

[16]Schmidt, E.M., McIntosh, J.S., Durelli, L., 1978. Fine control of operantly conditioned firing patterns of cortical neurons. Exp. Neurol., 61(2):349-369.

[17]Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P., 2002. Instant neural control of a movement signal. Nature, 416(6877):141-142.

[18]Shoham, S., Paninski, L.M., Fellows, M.R., Hatsopoulos, N.G., Donoghue, J.P., 2005. Statistical encoding model for a primary motor cortical brain-machine interface. IEEE Trans. Biomed. Eng., 52(7):1312-1322.

[19]Smith, A.C., Brown, E.N., 2003. Estimating a state-space model from point process observations. Neural Comput., 15(5):965-991.

[20]Specht, D.F., 1990. Probabilistic neural networks. Neural Netw., 3(1):109-118.

[21]Taylor, D.M., Tillery, S.I., Schwartz, A.B., 2002. Direct cortical control of 3D neuroprosthetic devices. Science, 296(5574):1829-1832.

[22]Velliste, M., Perel, S., Spalding, M.C., 2008. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098-1101.

[23]Wang, Y., Paiva, A.R.C., Príncipe, J.C., Sanchez, J.C., 2009. Sequential monte carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Neural Comput., 21(10):2894-2930.

[24]Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L., 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810):361-365.

[25]Wu, W., Black, M.J., Gao, Y., 2002. Inferring Hand Motion from Multi-Cell Recordings in Motor Cortex Using a Kalman Filter. Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices. Edinburgh, Scotland (UK), p.66-73.

[26]Wu, W., Black, M.J., Gao, Y., Bienenstock, E., Serruya, M., 2003. Neural Deocoding of Cursor Motion Using a Kalman Filter. Advances in Neural Information Processing Systems 15. Cambridge, MIT Press, MA, p.1-8.

[27]Wu, W., Black, M.J., Mumford, D., Gao, Y., Bienenstock, E., 2004. Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng., 51(6):933-942.

[28]Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J., 2006. Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput., 18(1):80-118.

[29]Ye, X.S., Wang, P., Liu, J., 2008. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals. J. Neurosci. Methods, 174(2):186-193.

[30]Zhang, K., Ginzburg, I., McNaughton, B.L., 1998. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol., 79(2):1017-1044.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE