Full Text:   <3386>

CLC number: Q813; R51

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2011-04-12

Cited: 20

Clicked: 7778

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2011 Vol.12 No.5 P.372-380

http://doi.org/10.1631/jzus.B1100015


Plasticity of human menstrual blood stem cells derived from the endometrium


Author(s):  Jian Lin, Dennis Xiang, Jin-long Zhang, Julie Allickson, Charlie Xiang

Affiliation(s):  State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA, Infectious Disease Unit, Zhejiang Armed Police Hospital, Jiaxing 314000, China, Cryo-Cell International Inc., Oldsmar, FL 34677, USA, S-Evans Biosciences, Hangzhou 311121, China, J. Craig Venter Institute, Rockville, MD 20850, USA

Corresponding email(s):   cxiang@zju.edu.cn

Key Words:  Menstrual blood-derived stem cells (MenSCs), Endometrium, Multipotent, Plasticity


Jian Lin, Dennis Xiang, Jin-long Zhang, Julie Allickson, Charlie Xiang. Plasticity of human menstrual blood stem cells derived from the endometrium[J]. Journal of Zhejiang University Science B, 2011, 12(5): 372-380.

@article{title="Plasticity of human menstrual blood stem cells derived from the endometrium",
author="Jian Lin, Dennis Xiang, Jin-long Zhang, Julie Allickson, Charlie Xiang",
journal="Journal of Zhejiang University Science B",
volume="12",
number="5",
pages="372-380",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100015"
}

%0 Journal Article
%T Plasticity of human menstrual blood stem cells derived from the endometrium
%A Jian Lin
%A Dennis Xiang
%A Jin-long Zhang
%A Julie Allickson
%A Charlie Xiang
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 5
%P 372-380
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100015

TY - JOUR
T1 - Plasticity of human menstrual blood stem cells derived from the endometrium
A1 - Jian Lin
A1 - Dennis Xiang
A1 - Jin-long Zhang
A1 - Julie Allickson
A1 - Charlie Xiang
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 5
SP - 372
EP - 380
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100015


Abstract: 
Stem cells can be obtained from women’s menstrual blood derived from the endometrium. The cells display stem cell markers such as Oct-4, SSEA-4, Nanog, and c-kit (CD117), and have the potent ability to differentiate into various cell types, including the heart, nerve, bone, cartilage, and fat. There has been no evidence of teratoma, ectopic formation, or any immune response after transplantation into an animal model. These cells quickly regenerate after menstruation and secrete many growth factors to display recurrent angiogenesis. The plasticity and safety of the acquired cells have been demonstrated in many studies. menstrual blood-derived stem cells (MenSCs) provide an alternative source of adult stem cells for research and application in regenerative medicine. Here we summarize the multipotent properties and the plasticities of MenSCs and other endometrial stem cells from recent studies conducted both in vitro and in vivo.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdallah, B., Jensen, C., Gutierrez, G., Leslie, R., Jensen, T., Kassem, M., 2004. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J. Bone Miner. Res., 19(5):841-852.

[2]Aghajanova, L., Horcajadas, J.A., Esteban, F.J., Giudice, L.C., 2010. The bone marrow-derived human mesenchymal stem cell: potential progenitor of the endometrial stromal fibroblast. Biol. Reprod., 82(6):1076-1087.

[3]Arai, S., Minjares, C., Nagafuchi, S., Miyazaki, T., 2004. Improved experimental procedures for achieving efficient germ line transmission of nonobese diabetic (NOD)-derived embryonic stem cells. Exp. Diabesity Res., 5(3):219-226.

[4]Banas, A., Yamamoto, Y., Teratani, T., Ochiya, T., 2007. Stem cell plasticity: learning from hepatogenic differentiation strategies. Dev. Dyn., 236(12):3228-3241.

[5]Bentz, E.K., Kenning, M., Schneeberger, C., Kolbus, A., Huber, J.C., Hefler, L.A., Tempfer, C.B., 2010. Oct-4 expression in follicular and luteal phase endometrium: a pilot study. Reprod. Biol. Endocrin., 8(1):38.

[6]Bjornson, C.R., Rietze, R.L., Reynolds, B.A., Magli, M.C., Vescovi, A.L., 1999. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401):534-537.

[7]Borlongan, C.V., Kaneko, Y., Maki, M., Yu, S.J., Ali, M., Allickson, J.G., Sanberg, C.D., Kuzmin-Nichols, N., Sanberg, P.R., 2010. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev., 19(4):439-452.

[8]Chang, H., Jones, O., Masui, H., 1982. Human amniotic fluid cells grown in a hormone-supplemented medium: suitability for prenatal diagnosis. PNAS, 79(15):4795.

[9]Chien, C., Yen, B., Lee, F., Lai, T., Chen, Y., Chan, S., Huang, H., 2006. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells, 24(7):1759-1768.

[10]Cui, C.H., Uyama, T., Miyado, K., Terai, M., Kyo, S., Kiyono, T., Umezawa, A., 2007. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol. Biol. Cell, 18(5):1586-1594.

[11]de Coppi, P., Bartsch, G.Jr, Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., et al., 2007. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol., 25(1):100-106.

[12]Delo, D.M., de Coppi, P., Bartsch, G.Jr, Atala, A., 2006. Amniotic fluid and placental stem cells. Methods Enzymol., 419:426-438.

[13]Evans, M., Kaufman, M., 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819):154-156.

[14]Fu, X., Fang, L., Li, X., Cheng, B., Sheng, Z., 2006. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen., 14(3):325-335.

[15]Gargett, C.E., 2004. Stem cells in gynaecology. Aust. N. Z. J. Obstet. Gynaecol., 44(5):380-386.

[16]Gargett, C.E., 2007. Uterine stem cells: what is the evidence? Hum. Reprod. Update, 13(1):87-101.

[17]Gimble, J., Guilak, F., 2003. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5):362-369.

[18]Granero-Molto, F., Weis, J.A., Longobardi, L., Spagnoli, A., 2008. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin. Biol. Ther., 8(3):255-268.

[19]Hida, N., Nishiyama, N., Miyoshi, S., Kira, S., Segawa, K., Uyama, T., Mori, T., Miyado, K., Ikegami, Y., Cui, C., et al., 2008. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells, 26(7):1695-1704.

[20]Ikegami, Y., Miyoshi, S., Nishiyama, N., Hida, N., Okamoto, K., Miyado, K., Segawa, K., Ogawa, S., Umezawa, A., 2010. Serum-independent cardiomyogenic transdifferentiation in human endometrium-derived mesenchymal cells. Artif. Organs, 34(4):280-288.

[21]In′t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., Noort, W.A., Claas, F.H., Willemze, R., Fibbe, W.E., Kanhai, H.H., 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4):1548-1549.

[22]Iwaguro, H., Yamaguchi, J., Kalka, C., Murasawa, S., Masuda, H., Hayashi, S., Silver, M., Li, T., Isner, J., Asahara, T., 2002. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation, 105(6):732-738.

[23]Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al., 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893):41-49.

[24]Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W., Silver, M., Kearney, M., Li, T., Isner, J., Asahara, T., 2000. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS, 97(7):3422-3427.

[25]Kennea, N., Mehmet, H., 2002. Neural stem cells. J. Pathol., 197(4):536-550.

[26]Krause, D., Theise, N., Collector, M., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., Sharkis, S., 2001. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3):369-377.

[27]Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I.L., Grompe, M., 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med., 6(11):1229-1234.

[28]Lakshmipathy, U., Verfaillie, C., 2005. Stem cell plasticity. Blood Rev., 19(1):29-38.

[29]Lau, K., Paus, R., Tiede, S., Day, P., Bayat, A., 2009. Exploring the role of stem cells in cutaneous wound healing. Exp. Dermatol., 18(11):921-933.

[30]Lee, H.J., Lim, I.J., Lee, M.C., Kim, S.U., 2010. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J. Neurosci. Res., 88(15):3282-3294.

[31]Lee, J.B., Lee, J.E., Park, J.H., Kim, S.J., Kim, M.K., Roh, S.I., Yoon, H.S., 2005. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol. Reprod., 72(1):42-49.

[32]Li, H., Chen, Y., Chen, S., Kao, C., Tseng, L., Lo, W., Chang, C., Yang, D., Ku, H., Twu, N., 2010. Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J. Pharmacol. Exp. Ther., 335(3):817-829.

[33]Luo, G., Cheng, W., He, W., Wang, X., Tan, J., Fitzgerald, M., Li, X., Wu, J., 2010. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen., 18(5):506-513.

[34]Maruyama, T., Masuda, H., Ono, M., Kajitani, T., Yoshimura, Y., 2010. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction, 140(1):11-22.

[35]Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., et al., 2007. Endometrial regenerative cells: a novel stem cell population. J. Transl. Med., 5(1):57.

[36]Moon, Y., Yoon, H., Lee, M., Jang, I., Lee, D., Lee, J., Lee, S., Lee, K., Kim, Y., Eom, Y., 2009. Multipotent progenitor cells derived from human umbilical cord blood can differentiate into hepatocyte-like cells in a liver injury rat model. Tranplant. Proc., 41(10):4357-4360.

[37]Murphy, M.P., Wang, H., Patel, A.N., Kambhampati, S., Angle, N., Chan, K., Marleau, A.M., Pyszniak, A., Carrier, E., Ichim, T.E., et al., 2008. Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J. Transl. Med., 6(1):45.

[38]Nandoe Tewarie, R.D., Hurtado, A., Levi, A.D., Grotenhuis, J.A., Oudega, M., 2006. Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant., 15(7):563-577.

[39]Ogawa, M., 1993. Differentiation and proliferation of hematopoietic stem cells. Blood, 81(11):2844-2853.

[40]Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., et al., 2001. Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829):701-705.

[41]Padykula, H.A., 1991. Regeneration in the primate uterus: the role of stem cells. Ann. N Y. Acad. Sci., 622:47-56.

[42]Patel, A.N., Geffner, L., Vina, R.F., Saslavsky, J., Urschel, H.C.Jr, Kormos, R., Benetti, F., 2005. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J. Thorac. Cardiovasc. Surg., 130(6):1631-1638.

[43]Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., Allickson, J.G., 2008. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant., 17(3):303-311.

[44]Piacibello, W., Sanavio, F., Severino, A., Dane, A., Gammaitoni, L., Fagioli, F., Perissinotto, E., Cavalloni, G., Kollet, O., Lapidot, T., et al., 1999. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34+ cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood, 93(11):3736-3749.

[45]Pitini, V., Altavilla, G., Arrigo, C., 2006. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation. J. Thorac. Cardiovasc. Surg., 131(5):1213-1214.

[46]Portmann-Lanz, C., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W., Surbek, D., 2006. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol., 194(3):664-673.

[47]Prianishnikov, V.A., 1978. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception, 18(3):213-223.

[48]Rebelatto, C., Aguiar, A., Moretao, M., Senegaglia, A., Hansen, P., Barchiki, F., Oliveira, J., Martins, J., Kuligovski, C., Mansur, F., 2008. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med., 233(7):901-913.

[49]Reubinoff, B., Pera, M., Fong, C., Trounson, A., Bongso, A., 2000. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol., 18(4):399-404.

[50]Schüring, A.N., Schulte, N., Kelsch, R., Röpke, A., Kiesel, L., Götte, M., 2011. Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil. Steril., 95(1):423-426.

[51]Schwab, K.E., Chan, R.W., Gargett, C.E., 2005. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil. Steril., 84(2):1124-1130.

[52]Sherman, B., Korenman, S., 1975. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J. Clin. Invest., 55(4):699-706.

[53]Stock, P., Bruckner, S., Ebensing, S., Hempel, M., Dollinger, M.M., Christ, B., 2010. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat. Protoc., 5(4):617-627.

[54]Strem, B., Hicok, K., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R., Fraser, J., Hedrick, M., 2005. Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med., 54(3):132-141.

[55]Tanaka, E.M., 2003. Cell differentiation and cell fate during urodele tail and limb regeneration. Curr. Opin. Genet. Dev., 13(5):497-501.

[56]Taylor, H.S., 2004. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA, 292(1):81-85.

[57]Toyoda, M., Cui, C., Umezawa, A., 2007. Myogenic transdifferentiation of menstrual blood-derived cells. Acta Myol., 26(3):176-178.

[58]Vaquero, J., Zurita, M., 2009. Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol. Histopathol., 24(1):107-116.

[59]Vilquin, J.T., Rosset, P., 2006. Mesenchymal stem cells in bone and cartilage repair: current status. Regen. Med., 1(4):589-604.

[60]Wagers, A.J., Weissman, I.L., 2004. Plasticity of adult stem cells. Cell, 116(5):639-648.

[61]Walker, M., Patel, K., Stappenbeck, T., 2009. The stem cell niche. J. Pathol., 217(2):169-180.

[62]Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., Olson, S., Grompe, M., 2003. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422(6934):897-901.

[63]Wolff, E.F., Wolff, A.B., Hongling, D., Taylor, H.S., 2007. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod. Sci., 14(6):524-533.

[64]Wolff, E.F., Gao, X.B., Yao, K.V., Andrews, Z.B., Du, H., Elsworth, J.D., Taylor, H.S., 2010. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J. Cell. Mol. Med., in press.

[65]Xiang, Y., Zheng, Q., Jia, B.B., Huang, G.P., Xu, Y.L., Wang, J.F., Pan, Z.J., 2007. Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J. Zhejiang Univ.-Sci. B, 8(2):136-146.

[66]Yamazaki, Y., Kanno, H., Maeda, K., Yoshida, T., Kobayashi, N., Kubo, A., Yamaguchi, Y., Saito, T., 2010. Engrafted VHL peptide-delivered bone marrow stromal cells promote spinal cord repair in rats. Neuroreport, 21(4):287-292.

[67]Yang, M., Wei, X., Li, J., Heinel, L.A., Rosenwasser, R., Iacovitti, L., 2010. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant., 19(9):1073-1084.

[68]Zhong, Z.H., Patel, A.N., Ichim, T.E., Riordan, N.H., Wang, H., Min, W.P., Woods, E.J., Reid, M., Mansilla, E., Marin, G.H., et al., 2009. Feasibility investigation of allogeneic endometrial regenerative cells. J. Transl. Med., 7(1):15.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE