CLC number: Q968
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-01-04
Cited: 5
Clicked: 6147
Fa-zhong Yang, Li Li, Bin Yang. Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants[J]. Journal of Zhejiang University Science B, 2012, 13(2): 126-135.
@article{title="Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants",
author="Fa-zhong Yang, Li Li, Bin Yang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="2",
pages="126-135",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100087"
}
%0 Journal Article
%T Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants
%A Fa-zhong Yang
%A Li Li
%A Bin Yang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 2
%P 126-135
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100087
TY - JOUR
T1 - Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants
A1 - Fa-zhong Yang
A1 - Li Li
A1 - Bin Yang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 2
SP - 126
EP - 135
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100087
Abstract: The search for active toxins for managing weeds or plant diseases is believed to be a promising avenue of investigation. However, the effects of Alternaria toxins on insects have just begun to be investigated. Bioactivities of toxins from four strains of Alternaria alternata on Rosa chinensis and rose aphid Macrosiphum rosivorum were tested in the present study. At a concentration of 50.0 μg/ml, the crude extract (toxin) of strain 7484 was found not to be harmful to rose plants with excised leaf-puncture method (P≥0.079), and rose plants showed enhanced resistance to rose aphids when this Alternaria toxin was sprayed on the plants (P≤0.001). However, this toxin caused no detrimental effects on aphids in insecticidal bioassay at a concentration of 10.0 to 160.0 μg/ml (P≥0.096). Therefore, the Alternaria toxin had significantly induced the resistance of rose plants against rose aphids, demonstrating that the resistance mechanism triggered by the Alternaria toxin in the rose plant may also be used by the plant to defend itself against insects. Further bioassays aimed to discover the olfactory responses of aphids to the toxin-induced volatiles of host plants. The aphids were significantly more attracted to both volatiles emitted and collected from control rose plants than to both volatiles emitted and collected from the toxin-treated rose plants (P≤0.014). This result showed that the toxin-induced resistance related to the volatile changes of host plants.
[1]Abbas, H.K., Vesonder, R.F., Boyette, C.D., Peterson, S.W., 1993. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Can. J. Bot., 71(1):155-160.
[2]Abbas, H.K., Tanaka, T., Shier, W.T., 1995. Biological activities of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures. Phytochemistry, 40(6):1681-1689.
[3]Ballhorn, D.J., 2011. Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.). J. Chem. Ecol., 37(2):141-144.
[4]Ballhorn, D.J., Pietrowski, A., Lieberei, R., 2010. Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J. Ecol., 98(1):226-236.
[5]Berestetskiy, A.O., 2008. A review of fungal phytotoxins: from basic studies to practical use. Appl. Biochem. Microbiol., 44(5):453-465.
[6]Bobylev, M.M., Bobyleva, L.I., Strobel, G.A., 1996. Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). J. Agric. Food Chem., 44(12):3960-3964.
[7]Chelkowski, J., Visconti, A., 1992. Alternaria: Biology, Plant Diseases and Metabolites. Elsevier, Amsterdam, the Netherlands, p.449-541.
[8]Chen, S., Dai, X., Qiang, S., Tang, Y., 2005. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol., 54(5):671-677.
[9]Cipollini, D., Enright, S., Traw, M.B., Bergelson, J., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol., 13(6):1643-1653.
[10]Egusa, M., Akamatsu, H., Tsuge, T., Otani, H., Kodama, M., 2008. Induced resistance in tomato plants to the toxin-dependent necrotrophic pathogen Alternaria alternata. Physiol. Mol. Plant Pathol., 73(4-5):67-77.
[11]Evidente, A., Punzo, B., Andolfi, A., Berestetskiy, A., Motta, A., 2009. Alternethanoxins A and B, polycyclic ethanones produced by Alternaria sonchi, potential mycoherbicides for Sonchus arvensis biocontrol. J. Agric. Food Chem., 57(15):6656-6660.
[12]Fraser, A.M., Mechaber, W.L., Hildebrand, J.G., 2003. Electroantennographic and behavioural responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol., 29(8):1813-1833.
[13]Hammack, L., 2003. Volatile semiochemical impact on trapping and distribution in maize of northern and western corn rootworm beetles (Coleoptera: Chrysomelidae). Agric. Forest Entomol., 5(2):113-122.
[14]Hammerschmidt, R., 1999. Induced disease resistance: how do induced plants stop pathogens? Physiol. Mol. Plant Pathol., 55(2):77-85.
[15]Hatcher, P.E., Paul, N.D., Ayres, P.G., Whittaker, J.B., 1995. Interactions between Rumex spp., herbivore and a rust fungus: the effect of Uromyces rumicis infection on leaf nutritional quality. Funct. Ecol., 9(1):97-105.
[16]Heath, M.C., Skalamera, D., 1997. Cellular interactions between plants and biotrophic fungal parasites. Adv. Bot. Res., 24:195-225.
[17]Heil, M., Bostock, R., 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot., 89(5):503-512.
[18]Kaul, S., Wani, M., Dhar, K.L., Dhar, M.K., 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol., 58(3):443-445.
[19]Kazem, M.G.T., El-Shereif, S.A.E.H.N., 2010. Toxic effect of capsicum and garlic xylene extracts in toxicity of boiled linseed oil formulations against some piercing sucking cotton pests. American-Eurasian J. Agric. Environ. Sci., 8(4):390-396.
[20]Kombrink, E., Schmelzer, E., 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur. J. Plant Pathol., 107(1):69-78.
[21]Montesano, M., Brader, G., Palva, E.T., 2003. Pathogen derived elicitors: searching for receptors in plants. Mol. Plant Pathol., 4(1):73-79.
[22]Park, S.H., Stierle, A., Strobel, G.A., 1993. Metabolism of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). Phytochemistry, 35(1):101-106.
[23]Qiang, S., Wang, L., Wei, R., Zhou, B., Chen, S., Zhu, Y., Dong, Y., An, C., 2010. Bioassay of the herbicidal activity of AAC-toxin produced by Alternaria alternata isolated from Ageratina adenophora. Weed Technol., 24(2):197-201.
[24]Rayamajhi, M.B., Van, T.K., Pratt, P.D., Center, T.D., 2006. Interactive association between Puccinia psidii and Oxyops vitiosa, two introduced natural enemies of Melaleuca quinquenervia in Florida. Biol. Control, 37(1):56-67.
[25]Rostás, M., Hilker, M., 2002. Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agric. Forest Entomol., 4(3):223-231.
[26]Rostás, M., Simon, M., Hilker, M., 2003. Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Appl. Ecol., 4(1):43-62.
[27]Strange, R.N., 2003. Introduction to Plant Pathology. John Wiley & Sons, Chichester, UK.
[28]Stribley, M.F., Moores, G.D., Devonshire, A.L., Sawick, R.M., 1983. Application of the FAO-recommended method for detecting insecticide resistance in Aphis jabae Scopoli, Sitobion avenae (F.), Metopolophium dirhodum (Walker) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Bull. Entomol. Res., 73:107-115.
[29]Strobel, G., Kenfield, D., Bunkers, G., Sugawara, F., Clardy, J., 1991. Phytotoxins as potential herbicides. Cell. Mol. Life Sci., 47(8):819-826.
[30]Švábová, L., Lebeda, A., 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopathol., 153(1):52-64.
[31]Wan, Z.X., Qiang, S., Xu, S.C., Shen, Z.G., Dong, Y.F., 2001. Culture conditions for production of phytotoxin by Alternaria alternata and plant range of toxicity. Chin. J. Biol. Control, 17(3):10-15.
[32]Zhang, L.H., 2003. Quorum quenching and proactive host defense. Trends Plant Sci., 8(5):238-244.
[33]Zhao, J., Sakai, K., 2003. Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot., 54(383):647-656.
Open peer comments: Debate/Discuss/Question/Opinion
<1>