Full Text:   <3822>

CLC number: R392.12

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2012-03-30

Cited: 18

Clicked: 6641

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.5 P.386-394

http://doi.org/10.1631/jzus.B1100218


Expression and preliminary functional analysis of Siglec-F on mouse macrophages


Author(s):  Yin-he Feng, Hui Mao

Affiliation(s):  Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China

Corresponding email(s):   merrymh@126.com

Key Words:  Siglec-F, Expression, Macrophages, Phagocytosis, Eosinophil


Yin-he Feng, Hui Mao. Expression and preliminary functional analysis of Siglec-F on mouse macrophages[J]. Journal of Zhejiang University Science B, 2012, 13(5): 386-394.

@article{title="Expression and preliminary functional analysis of Siglec-F on mouse macrophages",
author="Yin-he Feng, Hui Mao",
journal="Journal of Zhejiang University Science B",
volume="13",
number="5",
pages="386-394",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100218"
}

%0 Journal Article
%T Expression and preliminary functional analysis of Siglec-F on mouse macrophages
%A Yin-he Feng
%A Hui Mao
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 5
%P 386-394
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100218

TY - JOUR
T1 - Expression and preliminary functional analysis of Siglec-F on mouse macrophages
A1 - Yin-he Feng
A1 - Hui Mao
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 5
SP - 386
EP - 394
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100218


Abstract: 
Sialic acid-binding immunoglobulin-like lectin (Siglec)-F is a mouse functional paralog of human Siglec-8 that induces apoptosis in human eosinophils, and therefore may be useful as the basis of treatments for a variety of disorders associated with eosinophil hyperactivity, such as asthma. The expression pattern and functions of this protein in various cell types remain to be elucidated. The aim of this study was to determine the expression of siglec-F on mouse macrophages by immunocytochemical staining, and also to investigate the effects of siglec-F engagement by a siglec-F antibody on phagocytic activity of macrophages. The results showed that siglec-F expression was detected on mouse alveolar macrophages, but not on peritoneal macrophages. Furthermore, siglec-F engagement did not affect the phagocytic activity of alveolar macrophages in the resting state or in the activated state following stimulation by the proinflammatory mediator tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). siglec-F expression on alveolar macrophages may be a result of adaptation. macrophages actively regulate immune responses via production of cytokines. Therefore, further investigation of the effects of siglec-F engagement on immune mediators or cytokines released by alveolar macrophages is required.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Angata, T., Varki, A., 2000. Cloning, characterization, and phylogenetic analysis of Siglec-9, a new member of the CD33-related group of Siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J. Biol. Chem., 275(29):22127-22135.

[2]Angata, T., Hayakawa, T., Yamanaka, M., Varki, A., Nakamura, M., 2006. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J., 20(12):1964-1973.

[3]Angata, T., Tabuchi, Y., Nakamura, K., Nakamura, M., 2007. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology, 17(8):838-846.

[4]Bianchi, S.M., Prince, L.R., McPhillips, K., Allen, L., Marriott, H.M., Taylor, G.W., Hellewell, P.G., Sabroe, I., Dockrell, D.H., Henson, P.W., et al., 2008. Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med., 177(1):35-43.

[5]Bochner, B.S., 2009. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy, 39(3):317-324.

[6]Borges, V.M., Vandivier, R.W., McPhillips, K.A., Kench, J.A., Morimoto, K., Groshong, S.D., Richens, T.R., Graham, R.R., Muldrow, A.M., van Heule, L., et al., 2009. TNF-α inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am. J. Physiol. Lung Cell Mol. Physiol., 297(4):L586-L595.

[7]Cao, H., Lakner, U., de Bono, B., Traherne, J.A., Trowsdale, J., 2008. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur. J. Immunol., 38(8):2303-2315.

[8]Cho, J.Y., Song, D.J., Lee, S.Y., Miller, M., Dayan, S., Doherty, T.A., Varki, A., Broide, D.H., 2010. Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13. Respir. Res., 11(1):154.

[9]Corradin, S.B., Mauël, J., 1991. Phagocytosis of Leishmania enhances macrophage activation by IFN-γ and lipopolysaccharide. J. Immunol., 146(1):279-285.

[10]Crocker, P.R., Redelinghuys, P., 2008. Siglecs as positive and negative regulators of the immune system. Biochem. Soc. Trans., 36(6):1467-1471.

[11]Crocker, P.R., Clark, E.A., Filbin, M., Grodon, S., Jones, Y., 1998. Siglecs: a family of sialic-acid binding lectins. Glycobiology, 8(2):v-vi.

[12]Crocker, P.R., Paulson, J.C., Varki, A., 2007. Siglecs and their roles in the immune system. Nat. Rev. Immunol., 7(4):255-266.

[13]Dyer, K.D., Moser, J.M., Czapiga, M., Siegel, S.J., Percopo, C.M., Rosenberg, H.F., 2008. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol., 181:4004-4009.

[14]Freeman, S.D., Kelm, S., Barber, E.K., Crocker, P.R., 1995. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood, 85(8):2005-2012.

[15]Guo, J.P., Myers, A., Choi, O., Lee, H.S., Zhu, Z., Hudson, S.A., Brummet, M., Bovin, N.V., Crocker, P.V., Bochner, B.S., 2007. Ligands for Siglec-8 and Siglec-F: binding characteristics and tissue distribution. J. Allergy Clin. Immunol., 119(1):S299.

[16]Hu, B., Sonstein, J., Christensen, P.J., Punturieri, A., Curtis, J.L., 2000. Deficient in vitro and in vivo phagocytosis of apoptotic T cells by resident murine alveolar macrophages. J. Immunol., 165(4):2124-2133.

[17]Hu, B., Jennings, J.H., Sonstein, J., Floros, J., Todt, J.C., Curtis, J.L., 2004. Resident murine alveolar and peritoneal macrophages differ in adhesion of apoptotic thymocytes. Am. J. Respir. Cell Mol. Biol., 30(5):687-693.

[18]Licht, R., Jacobs, C.W., Tax, W.J., Berden, J.H., 1999. An assay for the quantitative measurement of in vitro phagocytosis of early apoptotic thymocytes by murine resident peritoneal macrophages. J. Immunol. Methods, 223(2):237-248.

[19]Morimoto, K., Janssen, W.J., Fessler, M.B., McPhillips, K.A., Borges, V.M., Bowler, R.P., Xiao, Y.Q., Kench, J.A., Henson, P.M., Vandivier, R.W., 2006. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J. Immunol., 176(12):7657-7665.

[20]Nakayama, M., Akiba, H., Takeda, K., Kojima, Y., Hashiquchi, M., Azuma, M., Yagita, H., Okumura, K., 2009. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 113(16):3821-3830.

[21]Nutku, E., Aizawa, H., Hudson, S.A., Bochner, B.S., 2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood, 101(12):5014-5020.

[22]O′Reilly, M.K., Paulson, J.C., 2009. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol. Sci., 30(5):240-248.

[23]Saltan, N., Kutlu, H.M., Hür, D., İşcan, A., Say, R., 2011. Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid. Int. J. Nanomed., 6:477-484.

[24]Schauer, R., 2009. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol., 19(5):507-514.

[25]Shen, Y., Kawamura, I., Nomura, T., Tsuchiya, K., Hara, H., Dewamitta, S.R., Sakai, S., Qu, H., Daim, S., Yamamoto, T., et al., 2010. Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect. Immun., 78(6):2857-2867.

[26]Song, D.J., Cho, J.Y., Lee, S.Y., Miller, M., Rosenthal, P., Soroosh, P., Croft, M., Zhang, M., Varki, A., Broide, D.H., 2009. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J. Immunol., 183(8):5333-5341.

[27]Sun, J., Shaper, N.L., Itonori, S., Heffer, L.M., Sheikh, K.A., Schnaar, R.L., 2004. Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology, 14(9):851-857.

[28]Tateno, H., Crocker, P.R., Paulson, J.C., 2005. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6′-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology, 15(11):1125-1135.

[29]Vandivier, R.W., Ogden, C.A., Fadok, V.A., Hoffmann, P.R., Brown, K.K., Botto, M., Walport, M.J., Fisher, J.H., Henson, P.H., Greene, K.E., 2002. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol., 169(7):3978-3986.

[30]von Gunten, S., Yousefi, S., Seitz, M., Jakob, S.M., Schaffner, T., Seqer, R., Takala, J., Villiger, P.M., Simon, H.U., 2005. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood, 106(4):1423-1431.

[31]Wang, Y., Cui, X., Tai, G., Ge, J., Li, N., Chen, F., Yu, F., Liu, Z., 2009. A critical role of activin A in maturation of mouse peritoneal macrophages in vitro and in vivo. Cell. Mol. Immunol., 6(5):387-392.

[32]Yokoi, H., Choi, O.H., Hubbard, W., Lee, H.S., Canning, B.J., Lee, H.H., Ryu, S.D., Bickel, C.A., Hudson, S.A., Bobcher, B.S., 2008. Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J. Allergy Clin. Immunol., 121(2):499-505.

[33]Zhang, X., Goncalves, R., Mosser, D.M., 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol., 83:14.1.1-14.1.14.

[34]Zimmermann, N., McBride, M.L., Yamada, Y., Hudson, S.A., Jones, C., Cromie, K.D., Crocker, P.R., Rothenberg, M.E., Bochner, B.S., 2008. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy, 63(9):1156-1163.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE