CLC number: R392.11
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-12-10
Cited: 18
Clicked: 5886
Yue Zhang, Ying-ke Li. MicroRNAs in the regulation of immune response against infections[J]. Journal of Zhejiang University Science B, 2013, 14(1): 1-7.
@article{title="MicroRNAs in the regulation of immune response against infections",
author="Yue Zhang, Ying-ke Li",
journal="Journal of Zhejiang University Science B",
volume="14",
number="1",
pages="1-7",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200292"
}
%0 Journal Article
%T MicroRNAs in the regulation of immune response against infections
%A Yue Zhang
%A Ying-ke Li
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 1
%P 1-7
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200292
TY - JOUR
T1 - MicroRNAs in the regulation of immune response against infections
A1 - Yue Zhang
A1 - Ying-ke Li
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 1
SP - 1
EP - 7
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200292
Abstract: Innate immunity is considered to provide the initial defense against infections by viruses, bacteria, fungi, and protozoa. Detection of the signature molecules of invading pathogens by front-line defense cells via various germline-encoded pattern recognition receptors (PRRs) is needed to activate intracellular signaling cascades that lead to transcriptional expression of inflammatory mediators to coordinate the elimination of pathogens and infected cells. To maintain a fine balance between protective immunity and inflammatory pathology upon infection, the innate signaling pathways in the host need to be tightly regulated. microRNAs (miRNAs), a new class of small non-coding RNAs, have been recently shown to be potent modulators that function at post-transcriptional levels. Accumulating evidence demonstrates that the involvement of microorganism-encoded and host miRNAs might play instructive roles in the immune response upon infection. Here, we discuss the current knowledge of miRNAs in the regulation of immune response against infections.
[1]Alam, M.M., O′Neill, L.A., 2011. MicroRNAs and the resolution phase of inflammation in macrophages. Eur. J. Immunol., 41(9):2482-2485.
[2]An, H., Xu, H., Zhang, M., Zhou, J., Feng, T., Qian, C., Qi, R., Cao, X., 2005. Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism. Blood, 105(12):4685-4692.
[3]An, H., Zhao, W., Hou, J., Zhang, Y., Xie, Y., Zheng, Y., Xu, H., Qian, C., Zhou, J., Yu, Y., et al., 2006. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity, 25(6):919-928.
[4]An, H., Hou, J., Zhou, J., Zhao, W., Xu, H., Zheng, Y., Yu, Y., Liu, S., Cao, X., 2008. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol., 9(5):542-550.
[5]Bai, Y., Qian, C., Qian, L., Ma, F., Hou, J., Chen, Y., Wang, Q., Cao, X., 2012. Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J. Immunol., 188(11):5293-5302.
[6]Barth, S., Pfuhl, T., Mamiani, A., Ehses, C., Roemer, K., Kremmer, E., Jaker, C., Hock, J., Meister, G., Grasser, F.A., 2008. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res., 36(2):666-675.
[7]Ceppi, M., Pereira, P.M., Dunand-Sauthier, I., Barras, E., Reith, W., Santos, M.A., Pierre, P., 2009. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. PNAS, 106(8):2735-2740.
[8]Chen, Q., Wang, H., Liu, Y., Song, Y., Lai, L., Han, Q., Cao, X., Wang, Q., 2012. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS One, 7(8):e42971.
[9]Chen, T., Guo, J., Han, C., Yang, M., Cao, X., 2009. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J. Immunol., 182(3):1449-1459.
[10]Dai, R., Phillips, R.A., Zhang, Y., Khan, D., Crasta, O., Ahmed, S.A., 2008. Suppression of LPS-induced interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood, 112(12):4591-4597.
[11]Desmet, C.J., Ishii, K.J., 2012. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol., 12(7):479-491.
[12]Fang, H., Wu, Y., Huang, X., Wang, W., Ang, B., Cao, X., Wan, T., 2011. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J. Biol. Chem., 286(35):30393-30400.
[13]Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., et al., 2007. A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450(7172):1096-1099.
[14]Han, C., Jin, J., Xu, S., Liu, H., Li, N., Cao, X., 2010. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol., 11(8):734-742.
[15]Hardison, S.E., Brown, G.D., 2012. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol., 13(9):817-822.
[16]Hou, J., Wang, P., Lin, L., Liu, X., Ma, F., An, H., Wang, Z., Cao, X., 2009. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol., 183(3):2150-2158.
[17]Hu, Y.L., Fong, S., Largman, C., Shen, W.F., 2010. HOXA9 regulates miR-155 in hematopoietic cells. Nucleic Acids Res., 38(16):5472-5478.
[18]Jiang, Y., Chen, G., Zhang, Y., Lu, L., Liu, S., Cao, X., 2007. Nerve growth factor promotes TLR4 signaling-induced maturation of human dendritic cells in vitro through inducible p75NTR 1. J. Immunol., 179(9):6297-6304.
[19]Kohlhaas, S., Garden, O.A., Scudamore, C., Turner, M., Okkenhaug, K., Vigorito, E., 2009. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J. Immunol., 182(5):2578-2582.
[20]Lagos, D., Pollara, G., Henderson, S., Gratrix, F., Fabani, M., Milne, R.S., Gotch, F., Boshoff, C., 2010. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat. Cell Biol., 12(5):513-519.
[21]Li, T., Morgan, M.J., Choksi, S., Zhang, Y., Kim, Y.S., Liu, Z.G., 2010. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nat. Immunol., 11(9):799-805.
[22]Li, Y., Fan, X., He, X., Sun, H., Zou, Z., Yuan, H., Xu, H., Wang, C., Shi, X., 2012. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-α. Cell Mol. Immunol., 9(6):497-502.
[23]Liu, X., Yao, M., Li, N., Wang, C., Zheng, Y., Cao, X., 2008. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood, 112(13):4961-4970.
[24]Liu, X., Zhan, Z., Xu, L., Ma, F., Li, D., Guo, Z., Li, N., Cao, X., 2010. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol., 185(12):7244-7251.
[25]Liu, X., Zhan, Z., Li, D., Xu, L., Ma, F., Zhang, P., Yao, H., Cao, X., 2011. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat. Immunol., 12(5):416-424.
[26]Ma, F., Liu, X., Li, D., Wang, P., Li, N., Lu, L., Cao, X., 2010. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J. Immunol., 184(11):6053-6059.
[27]Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., Hua, M., Li, N., Yao, H., Cao, X., 2011. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat. Immunol., 12(9):861-869.
[28]Murphy, E., Vanicek, J., Robins, H., Shenk, T., Levine, A.J., 2008. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. PNAS, 105(14):5453-5458.
[29]Netea, M.G., Wijmenga, C., O′Neill, L.A., 2012. Genetic variation in Toll-like receptors and disease susceptibility. Nat. Immunol., 13(6):535-542.
[30]O′Connell, R.M., Rao, D.S., Baltimore, D., 2012. MicroRNA regulation of inflammatory responses. Annu. Rev. Immunol., 30(1):295-312.
[31]O′Neill, L.A., Sheedy, F.J., McCoy, C.E., 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol., 11(3):163-175.
[32]Qian, C., Cao, X., 2012. Regulation of Toll-like receptor signaling pathways in innate immune response. Ann. N. Y. Acad. Sci., in press.
[33]Randall, G., Panis, M., Cooper, J.D., Tellinghuisen, T.L., Sukhodolets, K.E., Pfeffer, S., Landthaler, M., Landgraf, P., Kan, S., Lindenbach, B.D., et al., 2007. Cellular cofactors affecting hepatitis C virus infection and replication. PNAS, 104(31):12884-12889.
[34]Rathinam, V.A., Vanaja, S.K., Fitzgerald, K.A., 2012. Regulation of inflammasome signaling. Nat. Immunol., 13(4):333.
[35]Rui, Y., Liu, X., Li, N., Jiang, Y., Chen, G., Cao, X., Wang, J., 2007. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages. J. Immunol., 179(11):7344-7351.
[36]Skalsky, R.L., Cullen, B.R., 2010. Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol., 64(1):123-141.
[37]Taganov, K.D., Boldin, M.P., Chang, K.J., Baltimore, D., 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS, 103(33):12481-12486.
[38]Takeuchi, O., Akira, S., 2010. Pattern recognition receptors and inflammation. Cell, 140(6):805-820.
[39]Tang, B., Xiao, B., Liu, Z., Li, N., Zhu, E.D., Li, B.S., Xie, Q.H., Zhuang, Y., Zou, Q.M., Mao, X.H., 2010. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. FEBS Lett., 584(8):1481-1486.
[40]Tili, E., Michaille, J.J., Cimino, A., Costinean, S., Dumitru, C.D., Adair, B., Fabbri, M., Alder, H., Liu, C.G., Calin, G.A., et al., 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol., 179(8):5082-5089.
[41]Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., et al., 2007. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science, 315(5818):1579-1582.
[42]Wang, C., Chen, T., Zhang, J., Yang, M., Li, N., Xu, X., Cao, X., 2009. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat. Immunol., 10(7):744-752.
[43]Wang, L.L., Huang, Y., Wang, G., Chen, S.D., 2012. The potential role of microRNA-146 in Alzheimer’s disease: biomarker or therapeutic target? Med. Hypotheses, 78(3):398-401.
[44]Wang, P., Hou, J., Lin, L., Wang, C., Liu, X., Li, D., Ma, F., Wang, Z., Cao, X., 2010. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J. Immunol., 185(10):6226-6233.
[45]Wang, P., Gu, Y., Zhang, Q., Han, Y., Hou, J., Lin, L., Wu, C., Bao, Y., Su, X., Jiang, M., et al., 2012. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J. Immunol., 189(1):211-221.
[46]Wang, Y., Chen, T., Han, C., He, D., Liu, H., An, H., Cai, Z., Cao, X., 2007. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood, 110(3):962-971.
[47]Worm, J., Stenvang, J., Petri, A., Frederiksen, K.S., Obad, S., Elmen, J., Hedtjarn, M., Straarup, E.M., Hansen, J.B., Kauppinen, S., 2009. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp β and down-regulation of G-CSF. Nucleic Acids Res., 37(17):5784-5792.
[48]Wu, Y., Zhu, X., Li, N., Chen, T., Yang, M., Yao, M., Liu, X., Jin, B., Wang, X., Cao, X., 2011. CMRF-35-like molecule 3 preferentially promotes TLR9-triggered proinflammatory cytokine production in macrophages by enhancing TNF receptor-associated factor 6 ubiquitination. J. Immunol., 187(9):4881-4889.
[49]Xu, H., An, H., Hou, J., Han, C., Wang, P., Yu, Y., Cao, X., 2008. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol. Immunol., 45(13):3545-3552.
[50]Xu, S., Liu, X., Bao, Y., Zhu, X., Han, C., Zhang, P., Zhang, X., Li, W., Cao, X., 2012. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway. Nat. Immunol., 13(6):551-559.
[51]Yang, M., Wang, C., Zhu, X., Tang, S., Shi, L., Cao, X., Chen, T., 2011. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKCζ. J. Exp. Med., 208(10):2099-2112.
[52]Yang, P., An, H., Liu, X., Wen, M., Zheng, Y., Rui, Y., Cao, X., 2010. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nat. Immunol., 11(6):487-494.
[53]Yao, M., Liu, X., Li, D., Chen, T., Cai, Z., Cao, X., 2009. Late endosome/lysosome-localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and type I IFN production in macrophages. J. Immunol., 183(3):1751-1758.
[54]Zeiner, G.M., Boothroyd, J.C., 2010. Use of two novel approaches to discriminate between closely related host microRNAs that are manipulated by Toxoplasma gondii during infection. RNA, 16(6):1268-1274.
[55]Zhou, R., Gong, A.Y., Eischeid, A.N., Chen, X.M., 2012. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog., 8(5):e1002702.
Open peer comments: Debate/Discuss/Question/Opinion
<1>