Full Text:   <4259>

CLC number: X712

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-06-08

Cited: 21

Clicked: 5951

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.7 P.640-649

http://doi.org/10.1631/jzus.B1200353


Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar


Author(s):  Xuan Han, Cheng-feng Liang, Ting-qiang Li, Kai Wang, Hua-gang Huang, Xiao-e Yang

Affiliation(s):  Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   litq@zju.edu.cn

Key Words:  Biochar, Rice straw, Simultaneous sorption, Cadmium (Cd), Sulfamethoxazole (SMX)


Xuan Han, Cheng-feng Liang, Ting-qiang Li, Kai Wang, Hua-gang Huang, Xiao-e Yang. Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar[J]. Journal of Zhejiang University Science B, 2013, 14(7): 640-649.

@article{title="Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar",
author="Xuan Han, Cheng-feng Liang, Ting-qiang Li, Kai Wang, Hua-gang Huang, Xiao-e Yang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="7",
pages="640-649",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200353"
}

%0 Journal Article
%T Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar
%A Xuan Han
%A Cheng-feng Liang
%A Ting-qiang Li
%A Kai Wang
%A Hua-gang Huang
%A Xiao-e Yang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 7
%P 640-649
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200353

TY - JOUR
T1 - Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar
A1 - Xuan Han
A1 - Cheng-feng Liang
A1 - Ting-qiang Li
A1 - Kai Wang
A1 - Hua-gang Huang
A1 - Xiao-e Yang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 7
SP - 640
EP - 649
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200353


Abstract: 
The simultaneous sorption behavior and characteristics of cadmium (Cd) and sulfamethoxazole (SMX) on rice straw biochar were investigated. Isotherms of Cd and SMX were well modeled by the Langmuir equation (R2>0.95). The calculated maximum adsorption parameter (Q) of Cd was similar in single and binary systems (34129.69 and 35919.54 mg/kg, respectively). However, the Q of SMX in a binary system (9182.74 mg/kg) was much higher than that in a single system (1827.82 mg/kg). The presence of Cd significantly promoted the sorption of SMX on rice straw biochar. When the pH ranged from 3 to 7.5, the sorption of Cd had the characteristics of a parabola pattern with maximum adsorption at pH 5, while the adsorption quantity of SMX decreased with increasing pH, with maximum adsorption at pH 3. The amount of SMX adsorbed on biochar was positively correlated with the surface area of the biochar, and the maximum adsorption occurred with d 250 biochar (biochar with a diameter of 150–250 μm). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that the removal of Cd and SMX by rice straw biochar may be attributed to precipitation and the formation of surface complexes between Cd or SMX and carboxyl or hydroxyl groups. The results of this study indicate that rice straw biochar has the potential for simultaneous removal of Cd and SMX from co-contaminated water.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., Handelsman, J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol., 8(4):251-259.

[2]Bornemann, L.C., Kookana, R.S., Welp, G., 2007. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere, 67(5):1033-1042.

[3]Chen, B.L., Chen, Z.M., 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1):127-133.

[4]Chen, B.L., Zhou, D.D., Zhu, L.Z., 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol., 42(14):5137-5143.

[5]Chen, J.Y., Zhu, D.Q., Sun, C., 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol., 41(7):2536-2541.

[6]Chen, X.C., Chen, G.C., Chen, L.G., Chen, Y.X., Lehmann, J., McBride, M.B., Hay, A.G., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol., 102(19):8877-8884.

[7]Chun, Y., Sheng, G.Y., Chiou, C.T., Xing, B.S., 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol., 38(17):4649-4655.

[8]Dahlan, R., McDonald, C., Sunderland, V.B., 1987. Solubilities and intrinsic dissolution rates of sulfamethoxazole and trimethoprim. J. Pharm. Pharmacol., 39(4):246-251.

[9]Echeverría, J.C., Morera, M.T., Mazkiarán, C., Garrido, J.J., 1998. Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments. Environ. Pollut., 101(2):275-284.

[10]Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., Ismadji, S., 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater., 162(2-3):616-645.

[11]Fu, P., Hu, S., Xiang, J., Sun, L.S., Li, P.S., Zhang, J.Y., Zheng, C.G., 2009. Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy Fuels, 23(9):4605-4611.

[12]Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.J., 2011. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol., 45(13):5550-5556.

[13]Ji, L.L., Chen, W., Zheng, S.R., Xu, Z.Y., Zhu, D.Q., 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 25(19):11608-11613.

[14]Ji, L.L., Wan, Y.Q., Zheng, S.R., Zhu, D.Q., 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol., 45(13):5580-5586.

[15]Jiang, J., Xu, R.K., Jiang, T.Y., Li, Z., 2012. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted ultisol. J. Hazard. Mater., 229:145-150.

[16]Kannan, N., Rengasamy, G., 2005. Comparison of cadmium ion adsorption on various activated carbons. Water Air Soil Pollut., 163(1-4):185-201.

[17]Kumar, P.S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D., Murugesan, A., Sivanesan, S., 2012. Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean J. Chem. Eng., 29(6):756-768.

[18]Lehmann, J., 2007. Bio-energy in the black. Front. Ecol. Environ., 5(7):381-387.

[19]Lertpaitoonpan, W., Ong, S.K., Moorman, T.B., 2009. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 76(4):558-564.

[20]Liu, Z.G., Zhang, F.S., 2009. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater., 167(1-3):933-939.

[21]Loganathan, P., Vigneswaran, S., Kandasamy, J., Naidu, R., 2012. Cadmium sorption and desorption in soils: a review. Crit. Rev. Environ. Sci. Technol., 42(5):489-533.

[22]Lucida, H., Parkin, J.E., Sunderland, V.B., 2000. Kinetic study of the reaction of sulfamethoxazole and glucose under acidic conditions―I. Effect of pH and temperature. Int. J. Pharm., 202(1-2):47-61.

[23]Luo, Y., Xu, L., Rysz, M., Wang, Y.Q., Zhang, H., Alvarez, P.J.J., 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environ. Sci. Technol., 45(5):1827-1833.

[24]Martinez, J.L., 2008. Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887):365-367.

[25]Martins, R.J.E., Pardo, R., Boaventura, R.A.R., 2004. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res., 38(3):693-699.

[26]Máthé, I., Benedek, T., Táncsics, A., Palatinszky, M., Lányi, S., Márialigeti, K., 2012. Diversity, activity, antibiotic and heavy metal resistance of bacteria from petroleum hydrocarbon contaminated soils located in Harghita County (Romania). Int. Biodeter. Biodegr., 73:41-49.

[27]Matyar, F., 2012. Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea Coast. Bull. Environ. Contam. Toxicol., 89(3):551-556.

[28]Mohan, D., Pittman, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gomez-Serrano, V., Gong, H., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci., 310(1):57-73.

[29]Mukherjee, A., Zimmerman, A.R., Harris, W., 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3-4):247-255.

[30]Nag, S.K., Kookana, R., Smith, L., Krull, E., Macdonald, L.M., Gill, G., 2011. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere, 84(11):1572-1577.

[31]Oleszczuk, P., Rycaj, M., Lehmann, J., Cornelissen, G., 2012. Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum. Ecotoxicol. Environ. Saf., 80:321-326.

[32]Qu, C.S., Li, B., Wu, H.S., Giesy, J.P., 2012. Controlling air pollution from straw burning in china calls for efficient recycling. Environ. Sci. Technol., 46(15):7934-7936.

[33]Shinogi, Y., Kanri, Y., 2003. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour. Technol., 90(3):241-247.

[34]Stoob, K., Singer, H.P., Mueller, S.R., Schwarzenbach, R.P., Stamm, C.H., 2007. Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ. Sci. Technol., 41(21):7349-7355.

[35]Tong, X.J., Li, J.Y., Yuan, J.H., Xu, R.K., 2011. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J., 172(2-3):828-834.

[36]Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H., 2010. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere, 80(8):935-940.

[37]Wan, Y., Bao, Y.Y., Zhou, Q.X., 2010. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemosphere, 80(7):807-812.

[38]Wang, F.Y., Wang, H., Ma, J.W., 2010. Adsorption of cadmium(II) ions from aqueous solution by a new low-cost adsorbent-bamboo charcoal. J. Hazard. Mater., 177(1-3):300-306.

[39]Wang, Y.J., Jia, D.A., Sun, R.J., Zhu, H.W., Zhou, D.M., 2008. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol., 42(9):3254-3259.

[40]Wu, D., Pan, B., Wu, M., Peng, H.B., Zhang, D., Xing, B.S., 2012. Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Sci. Total Environ., 427:247-252.

[41]Wu, W.H., Wang, H.Z., Xu, J.M., Xie, Z.M., 2009. Adsorption characteristic of bensulfuron-methyl at variable added Pb2+ concentrations on paddy soils. J. Environ. Sci., 21(8):1129-1134.

[42]Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B., 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. Int., 20(1):358-368.

[43]Yadanaparthi, S.K., Graybill, D., von Wandruszka, R., 2009. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. Hazard. Mater., 171(1-3):1-15.

[44]Zhang, D., Pan, B., Zhang, H., Ning, P., Xing, B.S., 2010a. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol., 44(10):3806-3811.

[45]Zhang, X., Pan, B., Yang, K., Zhang, D., Hou, J.A., 2010b. Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. J. Environ. Sci. Health A, 45(12):1625-1634.

[46]Zhu, D.Q., Pignatello, J.J., 2005. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol., 39(7):2033-2041.

[47]Zhu, D.Q., Hyun, S.H., Pignatello, J.J., Lee, L.S., 2004. Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption. Environ. Sci. Technol., 38(16):4361-4368.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE