References
[1] Ahn, J., Wong, J.T., Molday, R.S., 2000. The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy.
J Biol Chem, 275(27):20399-20405.
[2] Allikmets, R., Singh, N., Sun, H., 1997. A photoreceptor cell-specific ATP-binding transporter gene (
ABCR) is mutated in recessive Stargardt macular dystrophy.
Nat Genet, 15(3):236-246.
[3] Allocca, M., Doria, M., Petrillo, M., 2008. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice.
J Clin Invest, 118(5):1955-1964.
[4] Ben-Shabat, S., Parish, C.A., Vollmer, H.R., 2002. Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin.
J Biol Chem, 277(9):7183-7190.
[5] Chrispell, J.D., Feathers, K.L., Kane, M.A., 2009. Rdh12 activity and effects on retinoid processing in the murine retina.
J Biol Chem, 284(32):21468-21477.
[6] Fishkin, N.E., Sparrow, J.R., Allikmets, R., 2005. Isolation and characterization of a retinal pigment epithelial cell fluorophore: an
all-trans-retinal dimer conjugate.
PNAS, 102(20):7091-7096.
[7] Holz, F.G., Schutt, F., Kopitz, J., 1999. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin.
Invest Ophthalmol Vis Sci, 40(3):737-743.
[8] Kim, S., Jang, Y., Jockusch, S., 2007. The all-
trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model.
PNAS, 104(49):19273-19278.
[9] Kong, J., Kim, S.R., Binley, K., 2008. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy.
Gene Ther, 15(19):1311-1320.
[10] Liu, J., Itagaki, Y., Ben-Shabat, S., 2000. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane.
J Biol Chem, 275(38):29354-29360.
[11] Maeda, A., Maeda, T., Sun, W., 2007. Redundant and unique roles of retinol dehydrogenases in the mouse retina.
PNAS, 104(49):19565-19570.
[12] Maiti, P., Kong, J., Kim, S.R., 2006. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation.
Biochemistry, 45(3):852-860.
[13] Parish, C.A., Hashimoto, M., Nakanishi, K., 1998. Isolation and one-step preparation of A2E and
iso-A2E, fluorophores from human retinal pigment epithelium.
PNAS, 95(25):14609-14613.
[14] Radu, R.A., Mata, N.L., Nusinowitz, S., 2003. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration.
PNAS, 100(8):4742-4747.
[15] Radu, R.A., Han, Y., Bui, T.V., 2005. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases.
Invest Ophthalmol Vis Sci, 46(12):4393-4401.
[16] Shroyer, N.F., Lewis, R.A., Allikmets, R., 1999. The rod photoreceptor ATP-binding cassette transporter gene,
ABCR, and retinal disease: from monogenic to multifactorial.
Vision Res, 39(15):2537-2544.
[17] Sieving, P.A., Chaudhry, P., Kondo, M., 2001. Inhibition of the visual cycle
in vivo by 13-
cis-retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy.
PNAS, 98(4):1835-1840.
[18] Sparrow, J.R., Boulton, M., 2005. RPE lipofuscin and its role in retinal pathobiology.
Exp Eye Res, 80(5):595-606.
[19] Sparrow, J.R., Parish, C.A., Hashimoto, M., 1999. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture.
Invest Ophthalmol Vis Sci, 40(12):2988-2995.
[20] Sparrow, J.R., Nakanishi, K., Parish, C.A., 2000. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells.
Invest Ophthalmol Vis Sci, 41(7):1981-1989.
[21] Sparrow, J.R., Vollmer, H.R., Zhou, J., 2003. A2E-epoxides damage DNA in retinal pigment epithelial cells.
J Biol Chem, 278(20):18207-18213.
[22] Sparrow, J.R., Kim, S.R., Cuervo, A.M., 2008. A2E, a pigment of RPE lipofuscin is generated from the precursor A2PE by a lysosomal enzyme activity.
Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, Springer New York,613:393-398.
[23] Sun, H., Molday, R.S., Nathans, J., 1999. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease.
J Biol Chem, 274(12):8269-8281.
[24] Suter, M., Reme, C., Grimm, C., 2000. Age-related macular degeneration. The lipofusion component
N-retinyl-
N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells.
J Biol Chem, 275(50):39625-39630.
[25] Vasireddy, V., Jablonski, M., Khan, N., 2009. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofusin.
Exp Eye Res, 89(6):905-912.
[26] Weng, J., Mata, N.L., Azarian, S.M., 1999. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in
abcr knockout mice.
Cell, 98(1):13-23.
[27] Wielgus, A.R., Chignell, C.F., Ceger, P., 2010. Comparison of A2E cytotoxicity and phototoxicity with all-
trans-retinal in human retinal pigment epithelial cells.
Photochem Photobiol, 86(4):781-791.
[28] Wu, L., Nagasaki, T., Sparrow, J.R., 2010. Photoreceptor cell degeneration in
Abcr
−/− mice.
Retinal Degenerative Diseases. Laboratory and Therapeutic Investigations. Advances in Experimental Medicine and Biology, Springer New York,664:533-539.
[29] Wu, Y., Li, J., Yao, K., 2013. Structures and biogenetic analysis of lipofuscin bis-retinoids.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(9):763-773.
[30] Yamamoto, K., Yoon, K.D., Ueda, K., 2011. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine.
Invest Ophthalmol Vis Sci, 52(12):9084-9090.
Open peer comments: Debate/Discuss/Question/Opinion
<1>