References
[1] Alkan, S.A., Martincic, K., Milcarek, C., 2006. The hnRNPs F and H2 bind to similar sequences to influence gene expression.
Biochem J, 393(1):361-371.
[2] An, J.J., Gharami, K., Liao, G.Y., 2008. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons.
Cell, 134(1):175-187.
[3] Arhin, G.K., Boots, M., Bagga, P.S., 2002. Downstream sequence elements with different affinities for the hnRNP H/H′ protein influence the processing efficiency of mammalian polyadenylation signals.
Nucl Acids Res, 30(8):1842-1850.
[4] Bava, F.A., Eliscovich, C., Ferreira, P.G., 2013. CPEB1 coordinates alternative 3′-UTR formation with translational regulation.
Nature, 495(7439):121-125.
[5] Bentley, D.L., 2005. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors.
Curr Opin Cell Biol, 17(3):251-256.
[6] Boelens, W.C., Jansen, E.J., van Venrooij, W.J., 1993. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA.
Cell, 72(6):881-892.
[7] Boutet, S.C., Cheung, T.H., Quach, N.L., 2012. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function.
Cell Stem Cell, 10(3):327-336.
[8] Brais, B., 2009. Oculopharyngeal muscular dystrophy: a polyalanine myopathy.
Curr Neurol Neurosci Rep, 9(1):76-82.
[9] Brown, S.J., Stoilov, P., Xing, Y., 2012. Chromatin and epigenetic regulation of pre-mRNA processing.
Hum Mol Genet, 21(R1):R90
[10] Castelo-Branco, P., Furger, A., Wollerton, M., 2004. Polypyrimidine tract binding protein modulates efficiency of polyadenylation.
Mol Cell Biol, 24(10):4174-4183.
[11] Chan, S., Choi, E.A., Shi, Y., 2011. Pre-mRNA 3′-end processing complex assembly and function.
Wiley Interdiscip Rev RNA, 2(3):321-335.
[12] Chuvpilo, S., Zimmer, M., Kerstan, A., 1999. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells.
Immunity, 10(2):261-269.
[13] Colgan, D.F., Manley, J.L., 1997. Mechanism and regulation of mRNA polyadenylation.
Genes Dev, 11(21):2755-2766.
[14] Cowley, M., Wood, A.J., Bohm, S., 2012. Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus.
Nucl Acids Res, 40(18):8917-8926.
[15] Danckwardt, S., Hentze, M.W., Kulozik, A.E., 2008. 3′ end mRNA processing: molecular mechanisms and implications for health and disease.
EMBO J, 27(3):482-498.
[16] Danckwardt, S., Gantzert, A.S., Macher-Goeppinger, S., 2011. p38 MAPK controls prothrombin expression by regulated RNA 3′ end processing.
Mol Cell, 41(3):298-310.
[17] de Klerk, E., Venema, A., Anvar, S.Y., 2012. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation.
Nucl Acids Res, 40(18):9089
[18] Denome, R.M., Cole, C.N., 1988. Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals.
Mol Cell Biol, 8:4829-4839.
[19] Derti, A., Garrett-Engele, P., Macisaac, K.D., 2012. A quantitative atlas of polyadenylation in five mammals.
Genome Res, 22(6):1173-1183.
[20] Dittmar, K.A., Jiang, P., Park, J.W., 2012. Genome-wide determination of a broad ESRP-regulated posttranscriptional network by high-throughput sequencing.
Mol Cell Biol, 32(8):1468-1482.
[21] Elkon, R., Drost, J., van Haaften, G., 2012. E2F mediates enhanced alternative polyadenylation in proliferation.
Genome Biol, 13(7):R59
[22] Elkon, R., Ugalde, A.P., Agami, R., 2013. Alternative cleavage and polyadenylation: extent, regulation and function.
Nat Rev Genet, 14(7):496-506.
[23] Flavell, S.W., Kim, T.K., Gray, J.M., 2008. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.
Neuron, 60(6):1022-1038.
[24] Fu, Y., Sun, Y., Li, Y., 2011. Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing.
Genome Res, 21(5):741-747.
[25] Gawande, B., Robida, M.D., Rahn, A., 2006.
Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline.
EMBO J, 25(6):1263-1272.
[26] Hirose, Y., Manley, J.L., 2000. RNA polymerase II and the integration of nuclear events.
Genes Dev, 14:1415-1429.
[27] Jan, C.H., Friedman, R.C., Ruby, J.G., 2010. Formation, regulation and evolution of
Caenorhabditis elegans 3′UTRs.
Nature, 469(7328):97-101.
[28] Jenal, M., Elkon, R., Loayza-Puch, F., 2012. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.
Cell, 149(3):538-553.
[29] Ji, X., Wan, J., Vishnu, M., 2013. αCP poly(C) binding proteins act as global regulators of alternative polyadenylation.
Mol Cell Biol, 33(13):2560-2573.
[30] Ji, Z., Tian, B., 2009. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types.
PLoS ONE, 4(12):e8419
[31] Ji, Z., Lee, J.Y., Pan, Z., 2009. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development.
PNAS, 106(17):7028-7033.
[32] Juge, F., Audibert, A., Benoit, B., 2000. Tissue-specific autoregulation of
Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells.
RNA, 6(11):1529-1538.
[33] Kleiman, F.E., Manley, J.L., 2001. The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression.
Cell, 104(5):743-753.
[34] Lackford, B., Yao, C., Charles, G.M., 2014. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal.
EMBO J, 33(8):878-889.
[35] Lianoglou, S., Garg, V., Yang, J.L., 2013. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression.
Genes Dev, 27(21):2380-2396.
[36] Liao, G.Y., An, J.J., Gharami, K., 2012. Dendritically targeted
Bdnf mRNA is essential for energy balance and response to leptin.
Nat Med, 18(4):564-571.
[37] Luo, W., Ji, Z., Pan, Z., 2013. The conserved intronic cleavage and polyadenylation site of
CstF-77 gene imparts control of 3′ end processing activity through feedback autoregulation and by U1 snRNP.
PLoS Genet, 9(7):e1003613
[38] Martin, G., Gruber, A.R., Keller, W., 2012. Genomewide analysis of pre-mrna 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length.
Cell Rep, 1(6):753-763.
[39] Martincic, K., Campbell, R., Edwalds-Gilbert, G., 1998. Increase in the 64-kDa subunit of the polyadenylation/cleavage stimulatory factor during the G
0 to S phase transition.
PNAS, 95(19):11095-11100.
[40] Mayr, C., Bartel, D.P., 2009. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells.
Cell, 138(4):673-684.
[41] Mueller, A.A., Cheung, T.H., Rando, T.A., 2013. All′s well that ends well: alternative polyadenylation and its implications for stem cell biology.
Curr Opin Cell Biol, 25(2):222-232.
[42] Muñoz, M.J., Prez Santangelo, M.S., Paronetto, M.P., 2009. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation.
Cell, 137(4):708-720.
[43] Ozsolak, F., Kapranov, P., Foissac, S., 2010. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.
Cell, 143(6):1018-1029.
[44] Pan, Z., Zhang, H., Hague, L.K., 2006. An intronic polyadenylation site in human and mouse
CstF-77 genes suggests an evolutionarily conserved regulatory mechanism.
Gene, 366(2):325-334.
[45] Park, J.Y., Li, W., Zheng, D., 2011. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules.
PLoS ONE, 6(7):e22391
[46] Pinto, P.A., Henriques, T., Freitas, M.O., 2011. RNA polymerase II kinetics in
polo polyadenylation signal selection.
EMBO J, 30(12):2431-2444.
[47] Proudfoot, N.J., Furger, A., Dye, M.J., 2002. Integrating mRNA processing with transcription.
Cell, 108(4):501-512.
[48] Sandberg, R., Neilson, J.R., Sarma, A., 2008. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites.
Science, 320(5883):1643-1647.
[49] Shepard, P.J., Choi, E.A., Lu, J., 2011. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq.
RNA, 17(4):761-772.
[50] Shi, Y., 2012. Alternative polyadenylation: new insights from global analyses.
RNA, 18(12):2105-2117.
[51] Shi, Y., Di Giammartino, D.C., Taylor, D., 2009. Molecular architecture of the human pre-mRNA 3′ processing complex.
Mol Cell, 33(3):365-376.
[52] Smibert, P., Miura, P., Westholm, J.O., 2012. Global patterns of tissue-specific alternative polyadenylation in
Drosophila
.
Cell Rep, 1(3):277-289.
[53] Spies, N., Burge, C.B., Bartel, D.P., 2013. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts.
Genome Res, 23(12):2078-2090.
[54] Takagaki, Y., Manley, J.L., 1998. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation.
Mol Cell, 2(6):761-771.
[55] Takagaki, Y., Seipelt, R.L., Peterson, M.L., 1996. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation.
Cell, 87(5):941-952.
[56] Tian, B., Graber, J.H., 2012. Signals for pre-mRNA cleavage and polyadenylation.
Wiley Interdiscip Rev RNA, 3(3):385-396.
[57] Tian, B., Manley, J.L., 2013. Alternative cleavage and polyadenylation: the long and short of it.
Trends Biochem Sci, 38(6):312
[58] Ulitsky, I., Shkumatava, A., Jan, C.H., 2012. Extensive alternative polyadenylation during zebrafish development.
Genome Res, 22(10):2054-2066.
[59] Vagner, S., Ruegsegger, U., Gunderson, S.I., 2000. Position-dependent inhibition of the cleavage step of pre-mRNA 3′-end processing by U1 snRNP.
RNA, 6(2):178-188.
[60] Wood, A.J., Schulz, R., Woodfine, K., 2008. Regulation of alternative polyadenylation by genomic imprinting.
Genes Dev, 22(9):1141-1146.
[61] Yao, C., Biesinger, J., Wan, J., 2012. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation.
PNAS, 109(46):18773-18778.
[62] Yao, C., Choi, E.A., Weng, L., 2013. Overlapping and distinct functions of CstF64 and CstF64tau in mammalian mRNA 3′ processing.
RNA, 19(12):1781-1790.
[63] Yu, L., Volkert, M.R., 2013. UV damage regulates alternative polyadenylation of the
RPB2 gene in yeast.
Nucl Acids Res, 41(5):3104-3114.
[64] Zhao, J., Hyman, L., Moore, C., 1999. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis.
Microbiol Mol Biol Rev, 63(2):405-445.
Open peer comments: Debate/Discuss/Question/Opinion
<1>