Full Text:   <2805>

Summary:  <1975>

Suppl. Mater.: 

CLC number: S154.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-15

Cited: 3

Clicked: 7640

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.11 P.953-965

http://doi.org/10.1631/jzus.B1400114


Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #


Author(s):  Hua Wang1, Shao-hui Yang1, Jing-ping Yang1, Ya-min Lv1, Xing Zhao1, Ji-liang Pang2

Affiliation(s):  1. Institute of Environmental Protection, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jpyang@zju.edu.cn

Key Words:  Bacterial and archaeal communities, Fertilizer, Soil, Temporal changes, Tea orchard, Functional genes


Hua Wang, Shao-hui Yang, Jing-ping Yang, Ya-min Lv, Xing Zhao, Ji-liang Pang. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards[J]. Journal of Zhejiang University Science B, 2014, 15(11): 953-965.

@article{title="Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards",
author="Hua Wang, Shao-hui Yang, Jing-ping Yang, Ya-min Lv, Xing Zhao, Ji-liang Pang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="11",
pages="953-965",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400114"
}

%0 Journal Article
%T Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards
%A Hua Wang
%A Shao-hui Yang
%A Jing-ping Yang
%A Ya-min Lv
%A Xing Zhao
%A Ji-liang Pang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 11
%P 953-965
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400114

TY - JOUR
T1 - Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards
A1 - Hua Wang
A1 - Shao-hui Yang
A1 - Jing-ping Yang
A1 - Ya-min Lv
A1 - Xing Zhao
A1 - Ji-liang Pang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 11
SP - 953
EP - 965
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400114


Abstract: 
It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

不同肥料处理下茶园土壤细菌和古菌群落的时间变化研究

研究化学肥料和有机肥处理条件下,茶园酸性土壤细菌和古菌群落结构,以及氮素转化相关功能酶基因丰度的时间变化规律。 研究肥料、土壤温度及土壤含水量对茶园酸性土壤细菌和古菌群落结构,以及氮素转化相关功能酶基因丰度的影响。 应用末端限制性片段长度多态性(T-RFLP)技术分析茶园酸性土壤中细菌和古菌群落结构随时间的变化规律,应用荧光定量聚合酶链式反应(PCR)技术,研究茶园酸性土壤细菌、古菌、硝化作用功能酶基因(细菌和古菌基因)和细菌反硝化作用功能酶基因(、、和基因)丰度的时间变化规律。 茶园土壤细菌和古菌群落结构受到肥料的影响,并随着取样时间有显著的变化。细菌、古菌和古菌的基因的丰度在7月份最小,而细菌的基因和反硝化作用功能酶基因(除基因)的丰度在9月份最小。有机肥处理增加了细菌、古菌和氮素转化相关功能酶基因的丰度,但化学肥料的施用对菌群及功能酶基因丰度的影响较小。土壤温度显著影响了土壤细菌和古菌的群落结构。土壤含水量与细菌反硝化作用功能酶基因有显著的相关性。土壤有机碳含量与细菌、古菌及功能酶基因丰度之间有显著的相关性。
茶园;时间变化;肥料;细菌和古菌群落;氮素转化相关功能酶基因

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ai, C., Liang, G., Sun, J., 2013. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol Biochem, 57:30-42. 


[2] Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol, 26(1):32-46. 


[3] Andert, J., Wessn, E., Brjesson, G., 2011. Temporal changes in abundance and composition of ammonia-oxidizing bacterial and archaeal communities in a drained peat soil in relation to N2O emissions. J Soils Sediments, 11(8):1399-1407. 


[4] Bell, C.W., Acosta-Martinez, V., Mcintyre, N.E., 2009. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb Ecol, 58(4):827-842. 


[5] Bhme, L., Langer, U., Bhme, F., 2005. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ, 109(1-2):141-152. 


[6] Bomberg, M., Mnster, U., Pumpanen, J., 2011. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures. Microb Ecol, 62(1):205-217. 


[7] Buckley, D.H., Schmidt, T.M., 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol, 5(6):441-452. 


[8] Calbrix, R., Barray, S., Chabrerie, O., 2007. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl Soil Ecol, 35(3):511-522. 


[9] Chan, Y.K., Mccormick, W.A., Ma, B., 2013. Effects of inorganic fertilizer and manure on soil archaeal abundance at two experimental farms during three consecutive rotation-cropping seasons. Appl Soil Ecol, 68:26-35. 


[10] Chen, Z., Liu, J., Wu, M., 2012. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb Ecol, 63(2):446-459. 


[11] Clark, I.M., Buchkina, N., Jhurreea, D., 2012. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the broadbalk wheat experiment. Philos Trans R Soc B Biol Sci, 367(1593):1235-1244. 


[12] Clegg, C.D., 2006. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl Soil Ecol, 31(1-2):73-82. 


[13] Čuhel, J., imek, M., Laughlin, R.J., 2010. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol, 76(6):1870-1878. 


[14] Dandie, C.E., Burton, D.L., Zebarth, B.J., 2008. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl Environ Microbiol, 74(19):5997-6005. 


[15] Di, H.J., Cameron, K.C., Podolyan, A., 2014. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem, 73:59-68. 


[16] Enwall, K., Philippot, L., Hallin, S., 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol, 71(12):8335-8343. 


[17] Galloway, J.N., Aber, J.D., Erisman, J.W., 2003. The nitrogen cascade. Bioscience, 53(4):341-356. 


[18] Gattinger, A., Hfle, M.G., Schloter, M., 2007. Traditional cattle manure application determines abundance, diversity and activity of methanogenic archaea in arable European soil. Environ Microbiol, 9(3):612-624. 


[19] Gray, S.B., Classen, A.T., Kardol, P., 2011. Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem. Soil Sci Soc Am J, 75(6):2217-2226. 


[20] Gutknecht, J.L., Field, C.B., Balser, T.C., 2012. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Glob Change Biol, 18(7):2256-2269. 


[21] Hallin, S., Jones, C.M., Schloter, M., 2009. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J, 3(5):597-605. 


[22] Hansel, C.M., Fendorf, S., Jardine, P.M., 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol, 74(5):1620-1633. 


[23] Hayden, H.L., Mele, P.M., Bougoure, D.S., 2012. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol, 14(12):3081-3096. 


[24] He, J.Z., Shen, J.P., Zhang, L.M., 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol, 9(9):2364-2374. 


[25] He, J.Z., Zheng, Y., Chen, C.R., 2008. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediments, 8(5):349-358. 


[26] Jung, J., Yeom, J., Han, J., 2012. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol, 50(3):365-373. 


[27] Kemnitz, D., Kolb, S., Conrad, R., 2007. High abundance of crenarchaeota in a temperate acidic forest soil. FEMS Microbiol Ecol, 60(3):442-448. 


[28] Lauber, C.L., Ramirez, K.S., Aanderud, Z., 2013. Temporal variability in soil microbial communities across land-use types. ISME J, 7(8):1641-1650. 


[29] Marschner, P., Kandeler, E., Marschner, B., 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem, 35(3):453-461. 


[30] Nelson, D., Sommers, L., 1982. Total carbon, organic carbon and organic matter.  Methods of Soil Analysis. American Society of Agronomy,Madison :539-580. 

[31] Nicol, G.W., Glover, L.A., Prosser, J.I., 2003. The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ Microbiol, 5(3):152-162. 


[32] Norman, R.J., Edberg, J.C., Stucki, J.W., 1985. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Sci Soc Am J, 49(5):1182-1185. 


[33] Ogilvie, L.A., Hirsch, P.R., Johnston, A.W., 2008. Bacterial diversity of the broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol, 56(3):525-537. 


[34] Pandey, A., Palni, L.M.S., 1996. The rhizosphere effect of tea on soil microbes in a himalayan monsoonal location. Biol Fertil Soils, 21(3):131-137. 


[35] Pastorelli, R., Landi, S., Trabelsi, D., 2011. Effects of soil management on structure and activity of denitrifying bacterial communities. Appl Soil Ecol, 49:46-58. 


[36] Peacock, A.G., Mullen, M., Ringelberg, D., 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem, 33(7-8):1011-1019. 


[37] Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol, 20(11):523-531. 


[38] Rasche, F., Knapp, D., Kaiser, C., 2011. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J, 5(3):389-402. 


[39] Rsch, C., Bothe, H., 2009. Diversity of total, nitrogen-fixing and denitrifying bacteria in an acid forest soil. Eur J Soil Sci, 60(6):883-894. 


[40] Saunders, O.E., Fortuna, A.M., Harrison, J.H., 2012. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil. Environ Sci Technol, 46(21):11684-11692. 


[41] Shen, J.P., Zhang, L.M., Zhu, Y.G., 2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol, 10(6):1601-1611. 


[42] Stark, C.H., Condron, L.M., O'Callaghan, M., 2008. Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments. Soil Biol Biochem, 40(6):1352-1363. 


[43] Stres, B., Danevčič, T., Pal, L., 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol, 66(1):110-122. 


[44] Sun, B., 2007.  Protocols for Standard Soil Observation and Measurement in Terrestrial Ecosystems. (in Chinese), China Environmental Science Press,Beijing, China :165-166. 

[45] Sun, H., Deng, S., Raun, W., 2004. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol, 70(10):5868-5874. 


[46] Szukics, U., Abell, G.C., Hdl, V., 2010. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol, 72(3):395-406. 


[47] Wakelin, S.A., Gregg, A.L., Simpson, R.J., 2009. Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, 52(4):237-251. 


[48] Wang, Y., Zhu, G., Song, L., 2014. Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J Basic Microbiol, 54(3):190-197. 


[49] Wessn, E., Nyberg, K., Jansson, J.K., 2010. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl Soil Ecol, 45(3):193-200. 


[50] Wolsing, M., Priem, A., 2004. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol Ecol, 48(2):261-271. 


[51] Yao, H., Gao, Y., Nicol, G.W., 2011. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol, 77(13):4618-4625. 


[52] Yu, K., Struwe, S., Kjller, A., 2008. Denitrification rate determined by nitrate disappearance is higher than determined by nitrous oxide production with acetylene blockage. Ecol Eng, 32(1):90-96. 


[53] Zhang, L.M., Hu, H.W., Shen, J.P., 2011. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J, 6(5):1032-1045. 


[54] Zhang, Q.C., Shamsi, I.H., Xu, D.T., 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol, 57:1-8. 


[55] Zumft, W.G., 1997. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 61(4):533-616. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE