References
[1] Al-Salihi, M.A., Herhaus, L., Macartney, T., 2012. USP11 augments TGFβ signalling by deubiquitylating ALK5.
Open Biol, 2(6):120063
[2] Bensaad, K., Tsuruta, A., Selak, M.A., 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.
Cell, 126(1):107-120.
[3] Brooks, C.L., Gu, W., 2006. p53 ubiquitination: Mdm2 and beyond.
Mol Cell, 21(3):307-315.
[4] Chen, D., Kon, N., Li, M., 2005. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.
Cell, 121(7):1071-1083.
[5] Cummins, J.M., Rago, C., Kohli, M., 2004. Tumour suppression: disruption of
HAUSP gene stabilizes p53.
Nature, 428(6982):1 p following 486
[6] Dornan, D., Wertz, I., Shimizu, H., 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53.
Nature, 429(6987):86-92.
[7] Harris, S.L., Levine, A.J., 2005. The p53 pathway: positive and negative feedback loops.
Oncogene, 24(17):2899-2908.
[8] Haupt, Y., Maya, R., Kazaz, A., 1997. Mdm2 promotes the rapid degradation of p53.
Nature, 387(6630):296-299.
[9] Honda, R., Tanaka, H., Yasuda, H., 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53.
FEBS Lett, 420(1):25-27.
[10] Ideguchi, H., Ueda, A., Tanaka, M., 2002. Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM.
Biochem J, 367(Pt 1):87-95.
[11] Kruse, J.P., Gu, W., 2009. Modes of p53 regulation.
Cell, 137(4):609-622.
[12] Kubbutat, M.H., Jones, S.N., Vousden, K.H., 1997. Regulation of p53 stability by Mdm2.
Nature, 387(6630):299-303.
[13] Leng, R.P., Lin, Y., Ma, W., 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation.
Cell, 112(6):779-791.
[14] Li, M., Chen, D., Shiloh, A., 2002. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization.
Nature, 416(6881):648-653.
[15] Li, M., Brooks, C.L., Kon, N., 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway.
Mol Cell, 13(6):879-886.
[16] Li, Y., Sun, X.X., Elferich, J., 2014. Monoubiquitination is critical for ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (Otub1) to suppress UbcH5 enzyme and stabilize p53 protein.
J Biol Chem, 289(8):5097-5108.
[17] Liu, J., Chung, H.J., Vogt, M., 2011. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress.
EMBO J, 30(5):846-858.
[18] Liu, J., Zhang, C., Feng, Z., 2014. Tumor suppressor p53 and its gain-of-function mutants in cancer.
Acta Biochim Biophys Sin, 46(3):170-179.
[19] Luo, J., Lu, Z., Lu, X., 2013. OTUD5 regulates p53 stability by deubiquitinating p53.
PLoS ONE, 8(10):e77682
[20] Madan, E., Gogna, R., Kuppusamy, P., 2012. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex.
Br J Cancer, 107(3):516-526.
[21] Meulmeester, E., Pereg, Y., Shiloh, Y., 2005. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation.
Cell Cycle, 4(9):1166-1170.
[22] Michael, D., Oren, M., 2003. The p53-Mdm2 module and the ubiquitin system.
Semin Cancer Biol, 13(1):49-58.
[23] Nag, S., Qin, J., Srivenugopal, K.S., 2013. The MDM2-p53 pathway revisited.
J Biomed Res, 27(4):254-271.
[24] Riley, T., Sontag, E., Chen, P., 2008. Transcriptional control of human p53-regulated genes.
Nat Rev Mol Cell Biol, 9(5):402-412.
[25] Schoenfeld, A.R., Apgar, S., Dolios, G., 2004. BRCA2 is ubiquitinated
in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage.
Mol Cell Biol, 24(17):7444-7455.
[26] Sowa, M.E., Bennett, E.J., Gygi, S.P., 2009. Defining the human deubiquitinating enzyme interaction landscape.
Cell, 138(2):389-403.
[27] Sun, W., Tan, X., Shi, Y., 2010. USP11 negatively regulates TNFα-induced NF-κB activation by targeting on IκBα.
Cell Signal, 22(3):386-394.
[28] Sun, X.X., Dai, M.S., 2014. Deubiquitinating enzyme regulation of the p53 pathway: a lesson from Otub1.
World J Biol Chem, 5(2):75-84.
[29] Sun, X.X., Challagundla, K.B., Dai, M.S., 2012. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1.
EMBO J, 31(3):576-592.
[30] Thirunavukarasou, A., Singh, P., Govindarajalu, G., 2014. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation.
Mol Cell Biochem, 390(1-2):93-100.
[31] Vogelstein, B., Lane, D., Levine, A.J., 2000. Surfing the p53 network.
Nature, 408(6810):307-310.
[32] Vousden, K.H., Prives, C., 2009. Blinded by the light: the growing complexity of p53.
Cell, 137(3):413-431.
[33] Wang, L., Zhang, S., Qu, G., 2013. Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer.
Oncol Rep, 29(1):283-287.
[34] Wiltshire, T.D., Lovejoy, C.A., Wang, T., 2010. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair.
J Biol Chem, 285(19):14565-14571.
[35] Won, K.Y., Lim, S.J., Kim, G.Y., 2012. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer.
Hum Pathol, 43(2):221-228.
[36] Wu, H.C., Lin, Y.C., Liu, C.H., 2014. USP11 regulates PML stability to control Notch-induced malignancy in brain tumours.
Nat Commun, 5:3214
[37] Yamaguchi, T., Kimura, J., Miki, Y., 2007. The deubiquitinating enzyme USP11 controls an IκB kinase α (IKKα)-p53 signaling pathway in response to tumor necrosis factor α (TNFα).
J Biol Chem, 282(47):33943-33948.
[38] Yuan, J., Luo, K., Zhang, L., 2010. USP10 regulates p53 localization and stability by deubiquitinating p53.
Cell, 140(3):384-396.
Open peer comments: Debate/Discuss/Question/Opinion
<1>