Full Text:   <2239>

Summary:  <1566>

Suppl. Mater.: 

CLC number: S435.111.4+1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-12-18

Cited: 0

Clicked: 4722

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.1 P.79-84

http://doi.org/10.1631/jzus.B1700336


Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae


Author(s):  Lu-Yao Huang, Min Wu, Xiao-Yun Yu, Lin Li, Fu-Cheng Lin, Xiao-Hong Liu

Affiliation(s):  State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   xhliu@zju.edu.cn

Key Words:  Bimolecular fluorescence complementation, Immunoprecipitation, MoGdi1, MoYpt7


Share this article to: More <<< Previous Article|

Lu-Yao Huang, Min Wu, Xiao-Yun Yu, Lin Li, Fu-Cheng Lin, Xiao-Hong Liu. Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae[J]. Journal of Zhejiang University Science B, 2018, 19(1): 79-84.

@article{title="Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae",
author="Lu-Yao Huang, Min Wu, Xiao-Yun Yu, Lin Li, Fu-Cheng Lin, Xiao-Hong Liu",
journal="Journal of Zhejiang University Science B",
volume="19",
number="1",
pages="79-84",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700336"
}

%0 Journal Article
%T Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae
%A Lu-Yao Huang
%A Min Wu
%A Xiao-Yun Yu
%A Lin Li
%A Fu-Cheng Lin
%A Xiao-Hong Liu
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 1
%P 79-84
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700336

TY - JOUR
T1 - Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae
A1 - Lu-Yao Huang
A1 - Min Wu
A1 - Xiao-Yun Yu
A1 - Lin Li
A1 - Fu-Cheng Lin
A1 - Xiao-Hong Liu
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 1
SP - 79
EP - 84
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700336


Abstract: 
In this study, we analyzed the physical interactions of the dominant negative isoform of moYpt7. Our results show that moYpt7 interacts with moGdi1. The dominant negative isoform of moYpt7 (dominant negative isoform, N125I) is essential for colony morphology, conidiation, and pathogenicity in the rice blast fungus. These results further demonstrate the biological functions of moYpt7 in Magnaporthe oryzae.

稻瘟病菌MoYpt7互作蛋白和点突变的研究

目的:研究MoYpt7与MoGdi1的互作关系以及定点突变体MoYpt7N125I的生物学功能.
创新点:补充了MoYpt7在稻瘟病菌致病过程中的生物学功能.
方法:采用双分子荧光互补和免疫共沉淀的方法检测MoYpt7与MoGdi1的相互作用.利用点突变的方法,分析MoYpt7的鸟嘌呤二核苷酸磷酸(GDP)结合形式的生物学功能.
结论:MoYpt7与Rab-GDP解离抑制因子的一个同源物MoGdi1相互作用,获得了MoYpt7的GDP结合形式的过表达突变体.该突变体菌落形态发生变化,产孢能力和致病性显著下降.同时,稻瘟病菌MoYpt7N125I的亚细胞定位发生变化.

关键词:双分子荧光互补;免疫沉淀;MoGdi1;MoYpt7

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen J, Zheng W, Zheng S, et al., 2008. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog, 4:e1000202.

[2]Ebbole DJ, 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol, 45: 437-456.

[3]Grosshans BL, Ortiz D, Novick P, 2006. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA, 103(32):11821-11827.

[4]Hutagalung AH, Novick PJ, 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev, 91(1):119-149.

[5]Liu XH, Chen SM, Gao HM, et al., 2015. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae. Environ Microbiol, 17(11):4495-4510.

[6]Ohsumi K, Arioka M, Nakajima H, et al., 2002. Cloning and characterization of a gene (avaA) from Aspergillus nidulans encoding a small GTPase involved in vacuolar biogenesis. Gene, 291(1-2):77-84.

[7]Pfeffer S, Aivazian D, 2004. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol, 5: 886-896.

[8]Pylypenko O, Rak A, Durek T, et al., 2006. Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J, 25:13-23.

[9]Wada Y, Ohsumi Y, Kawai E, et al., 1996. Mutational analysis of Vam4/Ypt7p function in the vacuolar biogenesis and morphogenesis in the yeast, Saccharomyces cerevisiae. Protoplasma, 191(3-4):126-135.

[10]Wu YW, Tan KT, Waldmann H, et al., 2007. Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc Natl Acad Sci USA, 104(30):12294-12299.

[11]Ye W, Chen X, Zhong Z, et al., 2014. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol, 67:37-50.

[12]Zheng H, Chen S, Chen X, et al., 2016. The small GTPase MoSec4 is involved in vegetative development and pathogenicity by regulating the extracellular protein secretion in Magnaporthe oryzae. Front Plant Sci, 7:1458.

[13]Zheng W, Chen J, Liu W, et al., 2007. A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea. Eukaryot Cell, 6(12):2240-2250.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE