CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-16
Cited: 0
Clicked: 1176
Citations: Bibtex RefMan EndNote GB/T7714
Shuang LI, Zhenzhen CHEN, Chuanxin CHEN, Yuyu NIU. Multiplexed single-cell transcriptome analysis reveals molecular characteristics of monkey pluripotent stem cell lines[J]. Journal of Zhejiang University Science B, 2023, 24(5): 418-429.
@article{title="Multiplexed single-cell transcriptome analysis reveals molecular characteristics of monkey pluripotent stem cell lines",
author="Shuang LI, Zhenzhen CHEN, Chuanxin CHEN, Yuyu NIU",
journal="Journal of Zhejiang University Science B",
volume="24",
number="5",
pages="418-429",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200440"
}
%0 Journal Article
%T Multiplexed single-cell transcriptome analysis reveals molecular characteristics of monkey pluripotent stem cell lines
%A Shuang LI
%A Zhenzhen CHEN
%A Chuanxin CHEN
%A Yuyu NIU
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 5
%P 418-429
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200440
TY - JOUR
T1 - Multiplexed single-cell transcriptome analysis reveals molecular characteristics of monkey pluripotent stem cell lines
A1 - Shuang LI
A1 - Zhenzhen CHEN
A1 - Chuanxin CHEN
A1 - Yuyu NIU
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 5
SP - 418
EP - 429
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200440
Abstract: Efforts have been made to establish various human pluripotent stem cell lines. However, such methods have not yet been duplicated in non-human primate cells. Here, we introduce a multiplexed single-cell sequencing technique to profile the molecular features of monkey pluripotent stem cells in published culture conditions. The results demonstrate suboptimized maintenance of pluripotency and show that the selected signaling pathways for resetting human stem cells can also be interpreted for establishing monkey cell lines. Overall, this work legitimates the translation of novel human cell line culture conditions to monkey cells and provides guidance for exploring chemical cocktails for monkey stem cell line derivation.
[1]AiZY, NiuBH, DuanK, et al., 2020. Modulation of Wnt and Activin/Nodal supports efficient derivation, cloning and suspension expansion of human pluripotent stem cells. Biomaterials, 249:120015.
[2]BayerlJ, AyyashM, ShaniT, et al., 2021. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 28(9):1549-1565.E12.
[3]BredenoordAL, CleversH, KnoblichJA, 2017. Human tissues in a dish: the research and ethical implications of organoid technology. Science, 355(6322):eaaf9414.
[4]ChenCX, JiWZ, NiuYY, 2021. Primate organoids and gene-editing technologies toward next-generation biomedical research. Trends Biotechnol, 39(12):1332-1342.
[5]ChenHW, AksoyI, GonnotF, et al., 2015. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun, 6:7095.
[6]DongC, BeltchevaM, GontarzP, et al., 2020. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife, 9:e52504.
[7]GirginMU, BroguiereN, HoehnelS, et al., 2021. Bioengineered embryoids mimic post-implantation development in vitro. Nat Commun, 12:5140.
[8]JiangYQ, ChenCX, RandolphLN, et al., 2021. Generation of pancreatic progenitors from human pluripotent stem cells by small molecules. Stem Cell Rep, 16(9):2395-2409.
[9]KempfH, OlmerR, HaaseA, et al., 2016. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun, 7:13602.
[10]KinoshitaM, BarberM, MansfieldW, et al., 2021. Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell, 28(3):453-471.e8.
[11]LiuDH, WangXY, HeDJ, et al., 2018. Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Res, 28(10):1481-1493.
[12]MaHX, ZhaiJL, WanHF, et al., 2019. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science, 366(6467):eaax7890.
[13]MorisN, AnlasK, van den BrinkSC, et al., 2020. An in vitro model of early anteroposterior organization during human development. Nature, 582(7812):410-415.
[14]NiuYY, SunNQ, LiC, et al., 2019. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 366(6467):eaaw5754.
[15]PastorWA, ChenD, LiuWL, et al., 2016. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell, 18(3):323-329.
[16]PosfaiE, SchellJP, JaniszewskiA, et al., 2021. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol, 23(1):49-60.
[17]StoeckiusM, HafemeisterC, StephensonW, et al., 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods, 14(9):865-868.
[18]StoeckiusM, ZhengSW, Houck-LoomisB, et al., 2018. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol, 19:224.
[19]StuartHT, van OostenAL, RadzisheuskayaA, et al., 2014. NANOG amplifies STAT3 activation and they synergistically induce the naive pluripotent program. Curr Biol, 24(3):340-346.
[20]StuartHT, StirparoGG, LohoffT, et al., 2019. Distinct molecular trajectories converge to induce naive pluripotency. Cell Stem Cell, 25(3):388-406.e8.
[21]SuJ, MorganiSM, DavidCJ, et al., 2020. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 577(7791):566-571.
[22]TakahashiK, TanabeK, OhnukiM, et al., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5):861-872.
[23]TakashimaY, GuoG, LoosR, et al., 2015. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 162(2):452-453.
[24]TesarPJ, ChenowethJG, BrookFA, et al., 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448(7150):196-199.
[25]TheunissenTW, PowellBE, WangHY, et al., 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell, 15(4):471-487.
[26]TheunissenTW, FriedliM, HeYP, et al., 2016. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell, 19(4):502-515.
[27]TyserRCV, MahammadovE, NakanohS, et al., 2021. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature, 600(7888):285-289.
[28]YangY, LiuB, XuJ, et al., 2017. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 169(2):243-257.e25.
[29]YuLQ, WeiYL, DuanJL, et al., 2021. Blastocyst-like structures generated from human pluripotent stem cells. Nature, 591(7851):620-626.
Open peer comments: Debate/Discuss/Question/Opinion
<1>