Full Text:   <1066>

Summary:  <74>

CLC number: 

On-line Access: 2025-10-21

Received: 2025-02-23

Revision Accepted: 2025-04-10

Crosschecked: 2025-10-21

Cited: 0

Clicked: 1351

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yangqing SHAO

https://ORCID:orcid.org/0009-0002-7010-8714

Huasong LU

https://ORCID:orcid.org/0000-0003-0875-5531

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.10 P.949-960

http://doi.org/10.1631/jzus.B2500092


Biomolecular condensates in Hippo pathway regulation


Author(s):  Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU

Affiliation(s):  Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   huasong_lu@zju.edu.cn

Key Words:  Hippo signaling pathway, Phase separation, Transcription regulation


Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU. Biomolecular condensates in Hippo pathway regulation[J]. Journal of Zhejiang University Science B, 2025, 26(10): 949-960.

@article{title="Biomolecular condensates in Hippo pathway regulation",
author="Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU",
journal="Journal of Zhejiang University Science B",
volume="26",
number="10",
pages="949-960",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2500092"
}

%0 Journal Article
%T Biomolecular condensates in Hippo pathway regulation
%A Yangqing SHAO
%A Yitong ZHANG
%A Wenxuan ZHU
%A Huasong LU
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 10
%P 949-960
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2500092

TY - JOUR
T1 - Biomolecular condensates in Hippo pathway regulation
A1 - Yangqing SHAO
A1 - Yitong ZHANG
A1 - Wenxuan ZHU
A1 - Huasong LU
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 10
SP - 949
EP - 960
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2500092


Abstract: 
Hippo signaling is a highly conserved pathway central to diverse cellular processes. Dysregulation of this pathway not only leads to developmental abnormalities but is also closely related to the occurrence and progression of various cancers. Recent studies have uncovered that, in addition to the classical signaling cascade regulation, biomolecular condensates formed via phase separation play a key role in the spatiotemporal regulation of Hippo signaling. In this review, we provide a summary of the latest research progress on the regulation of the hippo signaling pathway by phase separation, with a particular focus on transcriptional activation mediated by Yes-associated protein (YAP)/transcriptional coactivator with post-synaptic density-95, disks-large, and zonula occludens-1 (PDZ)-binding domain (TAZ) condensates. Furthermore, we discuss the utility of chemical crosslinking combined with mass spectrometry to analyze the TAZ condensate interactome and examine the role of the protein fused in sarcoma (FUS) in modulating the biophysical properties of TAZ condensates, which in turn influence their transcriptional activity and pro-tumorigenic functions. These insights not only advance our understanding of Hippo signaling but also offer new perspectives for therapeutic interventions targeting diseases linked to dysregulated YAP/TAZ activity.

相分离凝聚体在Hippo信号通路中的调控作用

邵阳晴,张怡童,朱文萱,陆华松
浙江大学生命科学研究院,全省癌症分子生物学重点实验室,中国杭州市,310058
摘要:Hippo信号通路作为一条高度保守的细胞信号转导途径,在细胞增殖和凋亡、器官大小发育以及组织再生等生物学过程中发挥着重要作用。该信号通路主要通过激酶级联反应,调控转录共激活因子YAP和TAZ的活性,进而影响下游靶基因表达。相关研究表明,YAP/TAZ在细胞核内可通过相分离机制形成凝聚体进而促进基因转录,但上述凝聚体的形成机制和动态调控过程尚不清楚。本文系统总结了相分离调控Hippo信号通路的最新研究进展,并重点介绍了YAP/TAZ凝聚体的转录调控功能。此外,本文还讨论了利用新型化学交联剂结合质谱技术解析TAZ凝聚体的互作网络,并发现FUS蛋白能够动态调控TAZ凝聚体的物质属性,即可通过维持其自身的液态流动性以促进TAZ的转录活性和促肿瘤发生的功能。相关研究的发现不仅加深了对Hippo信号通路调控机制的理解,也为YAP/TAZ活性失调相关疾病的靶向治疗提供了新的理论依据和潜在干预策略。

关键词:Hippo信号通路;相分离;转录调控

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbbasM, LipińskiWP, NakashimaKK, et al., 2021. A short peptide synthon for liquid–liquid phase separation. Nat Chem, 13(11):1046-1054.

[2]AlbertiS, DormannD, 2019. Liquid–liquid phase separation in disease. Annu Rev Genet, 53:171-194.

[3]AlbertiS, GladfelterA, MittagT, 2019. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell, 176(3):419-434.

[4]BananiSF, LeeHO, HymanAA, et al., 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18(5):285-298.

[5]BoeynaemsS, AlbertiS, FawziNL, et al., 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol, 28(6):420-435.

[6]BoijaA, KleinIA, YoungRA, 2021. Biomolecular condensates and cancer. Cancer Cell, 39(2):174-192.

[7]BonelloTT, CaiDF, FletcherGC, et al., 2023. Phase separation of Hippo signalling complexes. EMBO J, 42(6):e112863.

[8]CaiDF, FelicianoD, DongP, et al., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol, 21(12):1578-1589.

[9]CheXL, WuJJ, LiuH, et al., 2023. Cellular liquid–liquid phase separation: concept, functions, regulations, and detections. J Cell Physiol, 238(5):847-865.

[10]ChungCI, YangJJ, YangXY, et al., 2024. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci USA, 121(7):e2310430121.

[11]ConicellaAE, ZerzeGH, MittalJ, et al., 2016. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 24(9):1537-1549.

[12]DongJX, FeldmannG, HuangJB, et al., 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130(6):1120-1133.

[13]FrattiniC, PromonetA, AlghoulE, et al., 2021. TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell, 81(6):1231-1245.e8.

[14]FuMY, HuY, LanTX, et al., 2022. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther, 7:376.

[15]GagliaG, RashidR, YappC, et al., 2020. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol, 22(2):151-158.

[16]GinellGM, HolehouseAS, 2023. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. In: Zhou HX, Spille JH, Banerjee PR (Eds.), Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, Humana, New York, 2563:95-116.

[17]GuJG, WangC, HuRR, et al., 2021. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res, 31(9):1024-1027.

[18]GuoPF, LiB, WEID, et al., 2024. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science, 385(6709):eadf4478.

[19]HarveyKF, PflegerCM, HariharanIK, 2003. The Drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114(4):457-467.

[20]HongWJ, GuanKL, 2012. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol, 23(7):785-793.

[21]HuXH, WuXP, BerryK, et al., 2023. Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol, 25(2):323-336.

[22]HymanAA, WeberCA, JülicherF, 2014. Liquid–liquid phase separation in biology. Annu Rev Cell Dev Biol, 30:39-58.

[23]JiaZX, YangSX, LiMY, et al., 2022. A novel NF2 splicing mutant causes neurofibromatosis type 2 via liquid–liquid phase separation with large tumor suppressor and Hippo pathway. iScience, 25(11):105275.

[24]JusticeRW, ZilianO, WoodsDF, et al., 1995. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev, 9(5):534-546.

[25]KimHJ, KimNC, WangYD, et al., 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495:467-473.

[26]LiFL, GuanKL, 2022. The two sides of Hippo pathway in cancer. Semin Cancer Biol, 85:33-42.

[27]LiRH, TianT, GeQW, et al., 2021. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res, 31(10):1088-1105.

[28]LiW, HuJ, ShiB, et al., 2020. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol, 22(8):960-972.

[29]LinSY, HeXY, WangY, et al., 2024. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(4):280-292.

[30]LiuJY, WangJ, LiuYQ, et al., 2023. Liquid–liquid phase separation of DDR1 counteracts the Hippo pathway to orchestrate arterial stiffening. Circ Res, 132(1):87-105.

[31]LiuQX, LiJX, ZhangWJ, et al., 2021. Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 184(22):5559-5576.e19.

[32]LiuZY, ZhangSN, GuJG, et al., 2020. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol, 27(4):363-372.

[33]LuS, HuJJ, ArogundadeOA, et al., 2022. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat Cell Biol, 24(9):1378-1393.

[34]LuY, WuTT, GutmanO, et al., 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol, 22(4):453-464.

[35]MaSH, MengZP, ChenR, et al., 2019. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem, 88:577-604.

[36]MarkmillerS, SoltaniehS, ServerKL, et al., 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172(3):590-604.e13.

[37]MartinEW, HolehouseAS, PeranI, et al., 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 367(6478):694-699.

[38]MengZP, MoroishiT, GuanKL, 2016. Mechanisms of Hippo pathway regulation. Genes Dev, 30(1):1-17.

[39]MittagT, PappuRV, 2022. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell, 82(12):2201-2214.

[40]MurakamiT, QamarS, LinJQ, et al., 2015. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 88(4):678-690.

[41]MurthyAC, DignonGL, KanY, et al., 2019. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol, 26(7):637-648.

[42]NairSJ, YangL, MeluzziD, et al., 2019. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol, 26(3):193-203.

[43]QinM, GengES, WangJN, et al., 2024. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol, 20(6):710-720.

[44]ShaoYQ, ShuX, LuY, et al., 2024. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat Cell Biol, 26:86-99.

[45]ShiB, LiW, SongYS, et al., 2021. UTX condensation underlies its tumour-suppressive activity. Nature, 597:726-731.

[46]SunYM, ZhuSX, ChenXT, et al., 2024. LncRNAs maintain the functional phase state of nucleolar prion-like protein to facilitate rRNA processing. Mol Cell, 84(24):4878-4895.e10.

[47]WangL, ChoiK, SuT, et al., 2022. Multiphase coalescence mediates Hippo pathway activation. Cell, 185(23):4376-4393.e18.

[48]WeiYJ, LuoHC, YeePP, et al., 2021. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci (Weinh), 8(24):2102653.

[49]XuT, WangWY, ZhangS, et al., 1995. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development, 121(4):1053-1063.

[50]YuFX, GuanKL, 2013. The Hippo pathway: regulators and regulations. Genes Dev, 27(4):355-371.

[51]YuFX, ZhaoB, GuanKL, 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4):811-828.

[52]YuHY, LuS, GasiorK, et al., 2021. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science, 371(6529):eabb4309.

[53]YuM, PengZX, QinM, et al., 2021. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell, 81(6):1216-1230.e9.

[54]ZhangH, JiX, LiPL, et al., 2020. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci, 63(7):953-985.

[55]ZhongZX, JiaoZH, YuFX, 2024. The Hippo signaling pathway in development and regeneration. Cell Rep, 43(3):113926.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE