
CLC number:
On-line Access: 2025-10-21
Received: 2025-02-23
Revision Accepted: 2025-04-10
Crosschecked: 2025-10-21
Cited: 0
Clicked: 1351
Citations: Bibtex RefMan EndNote GB/T7714
Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU. Biomolecular condensates in Hippo pathway regulation[J]. Journal of Zhejiang University Science B, 2025, 26(10): 949-960.
@article{title="Biomolecular condensates in Hippo pathway regulation",
author="Yangqing SHAO, Yitong ZHANG, Wenxuan ZHU, Huasong LU",
journal="Journal of Zhejiang University Science B",
volume="26",
number="10",
pages="949-960",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2500092"
}
%0 Journal Article
%T Biomolecular condensates in Hippo pathway regulation
%A Yangqing SHAO
%A Yitong ZHANG
%A Wenxuan ZHU
%A Huasong LU
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 10
%P 949-960
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2500092
TY - JOUR
T1 - Biomolecular condensates in Hippo pathway regulation
A1 - Yangqing SHAO
A1 - Yitong ZHANG
A1 - Wenxuan ZHU
A1 - Huasong LU
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 10
SP - 949
EP - 960
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2500092
Abstract: Hippo signaling is a highly conserved pathway central to diverse cellular processes. Dysregulation of this pathway not only leads to developmental abnormalities but is also closely related to the occurrence and progression of various cancers. Recent studies have uncovered that, in addition to the classical signaling cascade regulation, biomolecular condensates formed via phase separation play a key role in the spatiotemporal regulation of Hippo signaling. In this review, we provide a summary of the latest research progress on the regulation of the hippo signaling pathway by phase separation, with a particular focus on transcriptional activation mediated by Yes-associated protein (YAP)/transcriptional coactivator with post-synaptic density-95, disks-large, and zonula occludens-1 (PDZ)-binding domain (TAZ) condensates. Furthermore, we discuss the utility of chemical crosslinking combined with mass spectrometry to analyze the TAZ condensate interactome and examine the role of the protein fused in sarcoma (FUS) in modulating the biophysical properties of TAZ condensates, which in turn influence their transcriptional activity and pro-tumorigenic functions. These insights not only advance our understanding of Hippo signaling but also offer new perspectives for therapeutic interventions targeting diseases linked to dysregulated YAP/TAZ activity.
[1]AbbasM, LipińskiWP, NakashimaKK, et al., 2021. A short peptide synthon for liquid–liquid phase separation. Nat Chem, 13(11):1046-1054.
[2]AlbertiS, DormannD, 2019. Liquid–liquid phase separation in disease. Annu Rev Genet, 53:171-194.
[3]AlbertiS, GladfelterA, MittagT, 2019. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell, 176(3):419-434.
[4]BananiSF, LeeHO, HymanAA, et al., 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18(5):285-298.
[5]BoeynaemsS, AlbertiS, FawziNL, et al., 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol, 28(6):420-435.
[6]BoijaA, KleinIA, YoungRA, 2021. Biomolecular condensates and cancer. Cancer Cell, 39(2):174-192.
[7]BonelloTT, CaiDF, FletcherGC, et al., 2023. Phase separation of Hippo signalling complexes. EMBO J, 42(6):e112863.
[8]CaiDF, FelicianoD, DongP, et al., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol, 21(12):1578-1589.
[9]CheXL, WuJJ, LiuH, et al., 2023. Cellular liquid–liquid phase separation: concept, functions, regulations, and detections. J Cell Physiol, 238(5):847-865.
[10]ChungCI, YangJJ, YangXY, et al., 2024. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci USA, 121(7):e2310430121.
[11]ConicellaAE, ZerzeGH, MittalJ, et al., 2016. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 24(9):1537-1549.
[12]DongJX, FeldmannG, HuangJB, et al., 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130(6):1120-1133.
[13]FrattiniC, PromonetA, AlghoulE, et al., 2021. TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell, 81(6):1231-1245.e8.
[14]FuMY, HuY, LanTX, et al., 2022. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther, 7:376.
[15]GagliaG, RashidR, YappC, et al., 2020. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol, 22(2):151-158.
[16]GinellGM, HolehouseAS, 2023. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. In: Zhou HX, Spille JH, Banerjee PR (Eds.), Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, Humana, New York, 2563:95-116.
[17]GuJG, WangC, HuRR, et al., 2021. Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res, 31(9):1024-1027.
[18]GuoPF, LiB, WEID, et al., 2024. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science, 385(6709):eadf4478.
[19]HarveyKF, PflegerCM, HariharanIK, 2003. The Drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114(4):457-467.
[20]HongWJ, GuanKL, 2012. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol, 23(7):785-793.
[21]HuXH, WuXP, BerryK, et al., 2023. Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol, 25(2):323-336.
[22]HymanAA, WeberCA, JülicherF, 2014. Liquid–liquid phase separation in biology. Annu Rev Cell Dev Biol, 30:39-58.
[23]JiaZX, YangSX, LiMY, et al., 2022. A novel NF2 splicing mutant causes neurofibromatosis type 2 via liquid–liquid phase separation with large tumor suppressor and Hippo pathway. iScience, 25(11):105275.
[24]JusticeRW, ZilianO, WoodsDF, et al., 1995. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev, 9(5):534-546.
[25]KimHJ, KimNC, WangYD, et al., 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 495:467-473.
[26]LiFL, GuanKL, 2022. The two sides of Hippo pathway in cancer. Semin Cancer Biol, 85:33-42.
[27]LiRH, TianT, GeQW, et al., 2021. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res, 31(10):1088-1105.
[28]LiW, HuJ, ShiB, et al., 2020. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat Cell Biol, 22(8):960-972.
[29]LinSY, HeXY, WangY, et al., 2024. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(4):280-292.
[30]LiuJY, WangJ, LiuYQ, et al., 2023. Liquid–liquid phase separation of DDR1 counteracts the Hippo pathway to orchestrate arterial stiffening. Circ Res, 132(1):87-105.
[31]LiuQX, LiJX, ZhangWJ, et al., 2021. Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 184(22):5559-5576.e19.
[32]LiuZY, ZhangSN, GuJG, et al., 2020. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol, 27(4):363-372.
[33]LuS, HuJJ, ArogundadeOA, et al., 2022. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat Cell Biol, 24(9):1378-1393.
[34]LuY, WuTT, GutmanO, et al., 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol, 22(4):453-464.
[35]MaSH, MengZP, ChenR, et al., 2019. The Hippo pathway: biology and pathophysiology. Annu Rev Biochem, 88:577-604.
[36]MarkmillerS, SoltaniehS, ServerKL, et al., 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172(3):590-604.e13.
[37]MartinEW, HolehouseAS, PeranI, et al., 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 367(6478):694-699.
[38]MengZP, MoroishiT, GuanKL, 2016. Mechanisms of Hippo pathway regulation. Genes Dev, 30(1):1-17.
[39]MittagT, PappuRV, 2022. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell, 82(12):2201-2214.
[40]MurakamiT, QamarS, LinJQ, et al., 2015. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 88(4):678-690.
[41]MurthyAC, DignonGL, KanY, et al., 2019. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol, 26(7):637-648.
[42]NairSJ, YangL, MeluzziD, et al., 2019. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat Struct Mol Biol, 26(3):193-203.
[43]QinM, GengES, WangJN, et al., 2024. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol, 20(6):710-720.
[44]ShaoYQ, ShuX, LuY, et al., 2024. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat Cell Biol, 26:86-99.
[45]ShiB, LiW, SongYS, et al., 2021. UTX condensation underlies its tumour-suppressive activity. Nature, 597:726-731.
[46]SunYM, ZhuSX, ChenXT, et al., 2024. LncRNAs maintain the functional phase state of nucleolar prion-like protein to facilitate rRNA processing. Mol Cell, 84(24):4878-4895.e10.
[47]WangL, ChoiK, SuT, et al., 2022. Multiphase coalescence mediates Hippo pathway activation. Cell, 185(23):4376-4393.e18.
[48]WeiYJ, LuoHC, YeePP, et al., 2021. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci (Weinh), 8(24):2102653.
[49]XuT, WangWY, ZhangS, et al., 1995. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development, 121(4):1053-1063.
[50]YuFX, GuanKL, 2013. The Hippo pathway: regulators and regulations. Genes Dev, 27(4):355-371.
[51]YuFX, ZhaoB, GuanKL, 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4):811-828.
[52]YuHY, LuS, GasiorK, et al., 2021. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science, 371(6529):eabb4309.
[53]YuM, PengZX, QinM, et al., 2021. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell, 81(6):1216-1230.e9.
[54]ZhangH, JiX, LiPL, et al., 2020. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci, 63(7):953-985.
[55]ZhongZX, JiaoZH, YuFX, 2024. The Hippo signaling pathway in development and regeneration. Cell Rep, 43(3):113926.
Open peer comments: Debate/Discuss/Question/Opinion
<1>