CLC number: TP18
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-03-01
Cited: 1
Clicked: 8448
Cheng-gang Cui, Yan-jun Li, Tie-jun Wu. A relative feasibility degree based approach for constrained optimization problems[J]. Journal of Zhejiang University Science C, 2010, 11(4): 249-260.
@article{title="A relative feasibility degree based approach for constrained optimization problems",
author="Cheng-gang Cui, Yan-jun Li, Tie-jun Wu",
journal="Journal of Zhejiang University Science C",
volume="11",
number="4",
pages="249-260",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910072"
}
%0 Journal Article
%T A relative feasibility degree based approach for constrained optimization problems
%A Cheng-gang Cui
%A Yan-jun Li
%A Tie-jun Wu
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 4
%P 249-260
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910072
TY - JOUR
T1 - A relative feasibility degree based approach for constrained optimization problems
A1 - Cheng-gang Cui
A1 - Yan-jun Li
A1 - Tie-jun Wu
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 4
SP - 249
EP - 260
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910072
Abstract: Based on the ratio of the size of the feasible region of constraints to the size of the feasible region of a constrained optimization problem, we propose a new constraint handling approach to improve the efficiency of heuristic search methods in solving the constrained optimization problems. In the traditional classification of a solution candidate, it is either a feasible or an infeasible solution. To refine this classification, a new concept about the relative feasibility degree of a solution candidate is proposed to represent the amount by which the ‘feasibility’ of the solution candidate exceeds that of another candidate. Relative feasibility degree based selection rules are also proposed to enable evolutionary computation techniques to accelerate the search process of reaching a feasible region. In addition, a relative feasibility degree based differential evolution algorithm is derived to solve constraint optimization problems. The proposed approach is tested with nine benchmark problems. Results indicate that our approach is very competitive compared with four existing state-of-the-art techniques, though still sensitive to the intervals of control parameters of the differential evolution.
[1]Back, T., Fogel, D.B., Michalewicz, Z., 1997. Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol, UK, p.351-356.
[2]Cai, Z., Wang, Y., 2006. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput., 10(6):658-675.
[3]Chung, C.J., Reynolds, R.G., 1996. A Testbed for Solving Optimization Problem Using Cultural Algorithms. Evolutionary Programming V: Proc. 5th Annual Conf. on Evolutionary Programming, p.225-236.
[4]Coello, C.A.C., 2000. Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim., 32(3):275-308.
[5]Coello, C.A.C., 2002. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng., 191(11-12):1245-1287.
[6]Colorni, A., Dorigo, M., Maniezzo, V., 1992. Distributed Optimization by Ant Colonies: Toward a Practice of Autonomous Systems. Proc. First European Conf. on Artificial Life, 37:258-267.
[7]Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng., 186(2-4):311-338.
[8]Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Unpublished Doctoral Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy.
[9]Dorigo, M., Colorni, A., Maniezzo, V., 1991. Positive Feedback as a Search Strategy. Technical Report, No. 91-016. Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.
[10]Eberhart, R., Kennedy, J., 1995. A New Optimizer Using Particle Swarm Theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39-43.
[11]Farmani, R., Wright, J., 2003. Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput., 7(5):445-455.
[12]Hadj-Alouane, A.B., Bean, J., 1997. A genetic algorithm for the multiple-choice integer program. Oper. Res., 45(1):92-101.
[13]Hinterding, R., Michalewicz, Z., 1998. Your Brains and My Beauty: Parent Matching for Constrained Optimisation. IEEE Int. Conf. on Evolutionary Computation Proc. IEEE World Congress on Computational Intelligence, p.180-185.
[14]Holland, J.H., 1962. Outline for a logical theory of adaptive systems. J. ACM, 9(3):297-314.
[15]Holland, J.H., 1992. Adaptation in Natural and Artificial Systems. MIT Press Cambridge, MA, USA.
[16]Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. Proc. IEEE Int. Conf. on Neural Networks, p.942-948.
[17]Kowalczyk, R., 1997. Constraint Consistent Genetic Algorithms. IEEE Int. Conf. on Evolutionary Computation, p.343-348.
[18]Mezura-Montes, E., Coello, C., 2005. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput., 9(1):1-17.
[19]Mezura-Montes, E., Coello, C.A.C., Tun-Morales, E.I., 2004. Simple Feasibility Rules and Differential Evolution for Constrained Optimization. Proc. 3rd Mexican Int. Conf. on Artificial Intelligence, p.707-716.
[20]Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York.
[21]Michalewicz, Z., Nazhiyath, G., 1995. Genocop III: A Co-evolutionary Algorithm for Numerical Optimization problems with Nonlinear Constraints. Proc. IEEE Int. Conf. on Evolutionary Computation, p.647-651.
[22]Michalewicz, Z., Deb, K., Schmidt, M., Stidsen, T., 2000. Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Trans. Evol. Comput., 4(3):197-215.
[23]Powell, D., Skolnick, M., 1993. Using Genetic Algorithms in Engineering Design Optimization with Non-linear Constraints. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[24]Qin, A.K., Suganthan, P.N., 2005. Self-adaptive Differential Evolution Algorithm for Numerical Optimization. IEEE Congress on Evolutionary Computation, p.1785-1791.
[25]Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M., 1989. Some Guidelines for Genetic Algorithms with Penalty Functions. Proc. 3rd Int. Conf. on Genetic Algorithms, p.191-197.
[26]Runarsson, T.P., Yao, X., 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput., 4(3):284-294.
[27]Schoenauer, M., Xanthakis, S., 1993. Constrained GA Optimization. Proc. 5th Int. Conf. on Genetic Algorithms, p.573-580.
[28]Storn, R., Price, K., 1997. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11(4):341-359.
[29]Wang, Y., Cai, Z., Zeng, W., 2008. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans. Evol. Comput., 12(1):80-92.
Open peer comments: Debate/Discuss/Question/Opinion
<1>