CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-09-29
Cited: 33
Clicked: 15205
Wei-wei FANG, Ji-ming CHEN, Lei SHU, Tian-shu CHU, De-pei QIAN. Congestion avoidance, detection and alleviation in wireless sensor networks[J]. Journal of Zhejiang University Science C, 2010, 11(1): 63-73.
@article{title="Congestion avoidance, detection and alleviation in wireless sensor networks",
author="Wei-wei FANG, Ji-ming CHEN, Lei SHU, Tian-shu CHU, De-pei QIAN",
journal="Journal of Zhejiang University Science C",
volume="11",
number="1",
pages="63-73",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910204"
}
%0 Journal Article
%T Congestion avoidance, detection and alleviation in wireless sensor networks
%A Wei-wei FANG
%A Ji-ming CHEN
%A Lei SHU
%A Tian-shu CHU
%A De-pei QIAN
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 1
%P 63-73
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910204
TY - JOUR
T1 - Congestion avoidance, detection and alleviation in wireless sensor networks
A1 - Wei-wei FANG
A1 - Ji-ming CHEN
A1 - Lei SHU
A1 - Tian-shu CHU
A1 - De-pei QIAN
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 1
SP - 63
EP - 73
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910204
Abstract: Congestion in wireless sensor networks (WSNs) not only causes severe information loss but also leads to excessive energy consumption. To address this problem, a novel scheme for congestion avoidance, detection and alleviation (CADA) in WSNs is proposed in this paper. By exploiting data characteristics, a small number of representative nodes are chosen from those in the event area as data sources, so that the source traffic can be suppressed proactively to avoid potential congestion. Once congestion occurs inevitably due to traffic mergence, it will be detected in a timely way by the hotspot node based on a combination of buffer occupancy and channel utilization. Congestion is then alleviated reactively by either dynamic traffic multiplexing or source rate regulation in accordance with the specific hotspot scenarios. Extensive simulation results under typical congestion scenarios are presented to illuminate the distinguished performance of the proposed scheme.
[1] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. A survey on sensor network. IEEE Commun. Mag., 40(8):102-114.
[2] Akan, O.B., Akyildiz, I.F., 2005. Event-to-sink reliable transport in wireless sensor networks. IEEE Trans. Network., 13(5):1003-1016.
[3] Berger, J.O., Oliveira, V.D., Sanso, B., 2001. Objective Bayesian analysis of spatially correlated data. J. Am. Statist. Assoc., 96(456):1361-1374.
[4] Casella, G., Berger, R.L., 2001. Statistical Inference. Duxbury Press, CA, USA, p.139-203.
[5] Chen, L., Szymanski, B.K., Branch, J.W., 2008. Quality-Driven Congestion Control for Target Tracking in Wireless Sensor Networks. Proc. 5th IEEE Int. Conf. on Mobile Ad Hoc and Sensor Systems, p.766-771.
[6] Chen, L.J., Low, S.H., Chiang, M., Doyle, J.C., 2006. Cross-Layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks. Proc. 25th Int. Conf. on Computer Communications, p.1-13.
[7] Chen, W.P., Hou, J.C., Sha L., 2004. Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans. Mob. Comput., 3(3):258-271.
[8] Cheng, T.E., Bajcsy, R., 2004. Congestion Control and Fairness for Many-to-One Routing in Sensor Networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.148-161.
[9] Das, A., Dutta, D., 2005. Data acquisition in multiple-sink sensor networks. ACM Mob. Comput. Commun. Rev., 9(3):82-85.
[10] Du, Z.G., Tong, J., Huang, J.H., Su, Y.M., Yang, X.B., Qian, H.H., Fang, W.W., Wu, J.F., Liu, Y., Qian, D.P., 2007. ProNet: A Wireless Sensor Network Testbed Supporting Performance Measurement and Background Traffic Generation. Proc. 2nd Int. Conf. on the Latest Advances in Networks, p.185-190.
[11] Eisenman, S.B., Campbell, A.T., 2007. E-CSMA: Supporting Enhanced CSMA Performance in Experimental Sensor Networks Using Per-Neighbor Transmission Probability Thresholds. Proc. 26th Int. Conf. on Computer Communications, p.1208-1216.
[12] Fang, W.W., Qian, D.P., Liu, Y., 2008. Transmission control protocols for wireless sensor networks. J. Software, 19(6):1439-1451 (in Chinese).
[13] Galluccio, L., Campbell, A., Palazzo, S., 2005. CONCERT: Aggregation-Based Congestion Control for Sensor Networks. Proc. 3rd Int. Conf. on Embedded Networked Sensor Systems, p.274-275.
[14] Gedik, B., Liu, L., Yu, P.S., 2007. ASAP: an adaptive sampling approach to data collection in sensor networks. IEEE Trans. Parall. Distr. Syst., 18(12):1766-1783.
[15] Gupta, P., Kumar, P.R., 2000. The capacity of wireless networks. IEEE Trans. Inf. Theory, 46(2):388-404.
[16] Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., 2002. IEEE Trans. Wirel. Commun., 1(4):660-670.
[17] Hull, B., Jamieson, K., Balakrishnan, H., 2004. Mitigating Congestion in Wireless Sensor Networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.134-147.
[18] Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.L., 2003. Impact of Interference on Multi-Hop Wireless Network Performance. Proc. 9th Annual Int. Conf. on Mobile Computing and Networking, p.66-80.
[19] Kang, J., Zhang, Y.Y., Nath, B., 2007. TARA: topology-aware resource adaption to alleviate congestion in sensor networks. IEEE Trans. Parall. Distr. Syst., 18(7):919-931.
[20] Kumar, R., Crepaldi, R., Rowaihy, H., Harris, A.F., Cao, G.H., Zorzi, M., Porta, L.T., 2008. Mitigating performance degradation in congested sensor networks. IEEE Trans. Mob. Comput., 7(6):682-697.
[21] Liu, C., Wu, K., Pei, J., 2007. An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parall. Distr. Syst., 18(7):1010-1023.
[22] Misra, S., Tiwari, V., Obaidat, M., 2009. LACAS: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. IEEE J. Sel. Areas Commun., 27(4):466-479.
[23] Popa, L., Raiciu, C., Stoica, I., Rosenblum, D., 2006. Reducing Congestion Effects in Wireless Networks by Multipath Routing. Proc. IEEE Int. Conf. on Network Protocols, p.96-105.
[24] Teo, J.Y., Ha, Y.J., Tham, C.K., 2008. Interference-minimized multipath routing with congestion control in wireless sensor network for high-rate streaming. IEEE Trans. Mob. Comput., 7(9):1124-1137.
[25] Vuran, M.C., Akyildiz, I.F., 2006. Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE Trans. Network., 14(2):316-329.
[26] Wan, C.Y., Eisenman, S.B., Campbell, A.T., 2003. CODA: Congestion Detection and Avoidance in Sensor Networks. Proc. 1st Int. Conf. on Embedded Networked Sensor Systems, p.266-279.
[27] Wan, C.Y., Eisenman, S.B., Campbell, A.T., Crowcroft, J., 2005. Siphon: Overload Traffic Management Using Multi-Radio Virtual Sinks in Sensor Networks. Proc. 3rd Int. Conf. on Embedded Networked Sensor Systems, p.116-129.
[28] Yu, Y.Q., Giannakis, G.B., 2009. Cross-layer congestion and contention control for wireless ad hoc networks. IEEE Trans. Wirel. Commun., 1(7):37-42.
[29] Zhao, M., Chen, Z.G., Zhang, L., Ge, Z.H., 2007. HS-Sift: hybrid spatial correlation-based medium access control for event-driven sensor networks. IET Commun., 1(6):1126-1132.
[30] Zhang, Q., Yang, X.L., Zhou, Y.M., Wang, L.R., Guo, X.S., 2007. A wireless solution for greenhouse monitoring and control system based on ZigBee technology. J Zhejiang Univ. Sci A, 8(10):1584-1587.
[31] Zhou, Y.F., Lyu, R.M., Liu, J.C., Wang, H., 2005. PORT: A Price-Oriented Reliable Transport Protocol for Wireless Sensor Networks. Proc. 16th IEEE Int. Symp. on Software Reliability Engineering, p.117-126.
Open peer comments: Debate/Discuss/Question/Opinion
<1>