CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-06-07
Cited: 4
Clicked: 8398
Yuan-jun Wang, Gunnar Farnebck, Carl-Fredrik Westin. Multi-affine registration using local polynomial expansion[J]. Journal of Zhejiang University Science C, 2010, 11(7): 495-503.
@article{title="Multi-affine registration using local polynomial expansion",
author="Yuan-jun Wang, Gunnar Farnebck, Carl-Fredrik Westin",
journal="Journal of Zhejiang University Science C",
volume="11",
number="7",
pages="495-503",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910658"
}
%0 Journal Article
%T Multi-affine registration using local polynomial expansion
%A Yuan-jun Wang
%A Gunnar Farnebck
%A Carl-Fredrik Westin
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 7
%P 495-503
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910658
TY - JOUR
T1 - Multi-affine registration using local polynomial expansion
A1 - Yuan-jun Wang
A1 - Gunnar Farnebck
A1 - Carl-Fredrik Westin
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 7
SP - 495
EP - 503
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910658
Abstract: In this paper, we present a non-linear (multi-affine) registration algorithm based on a local polynomial expansion model. We generalize previous work using a quadratic polynomial expansion model. Local affine models are estimated using this generalized model analytically and iteratively, and combined to a deformable registration algorithm. Experiments show that the affine parameter calculations derived from this quadratic model are more accurate than using a linear model. Experiments further indicate that the multi-affine deformable registration method can handle complex non-linear deformation fields necessary for deformable registration, and a faster convergent rate is verified from our comparison experiment.
[1]Andronache, A., von Siebenhal, M., Szekeley, G., Cattin, P., 2008. Non-rigid registration of multi-modal images using both mutual information and cross-correlation. Med. Image Anal., 12(1):3-15.
[2]Antoine Maintz, J.B., Viergever, M.A., 1998. A survey of medical image registration. Med. Image Anal., 2(1):1-36.
[3]Arsigny, V., Pennec, X., Ayache, N., 2005. Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations-application to the registration of histological slices. Med. Image Anal., 9(6):507-523.
[4]Farnebäck, G., 2002. Polynomial Expansion for Orientation and Motion Estimation. PhD Thesis, Dissertation No. 790, Linköping Studies in Science and Technology, Sweden.
[5]Farnebäck, G., Westin, C.F., 2006. Affine and deformable registration based on polynomial expansion. LNCS, 4190:857-864.
[6]Gan, R., Chung, A.C.S., Liao, S., 2008. Maximum distance-gradient for robust image registration. Med. Image Anal., 12(4):452-468.
[7]Gholipour, A., Kehtarnavaz, N., Bridggs, R.W., Gopinath, K.S., Ringe, W., Whittemove, A., Cheshkov, S., Bakhadinrov, K., 2008. Validation of nonrigid registration between functional and anatomical magnetic resonance brain images. IEEE Trans. Biomed. Eng., 55(2):563-571.
[8]Hellier, P., Barillot, C., Corouge, I., Gibaud, B., le Houalher, G., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., et al., 2003. Retrospective evaluation of inter-subject brain registration. IEEE Trans. Med. Imag., 22(9):1120-1130.
[9]Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkers, D.J., 2001. Medical image registration. Phys. Med. Biol., 46(3):R1-R45.
[10]Holden, M., 2008. A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imag., 27(1):111-128.
[11]Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P., 2006. Retrospective evaluation of a topology preserving non-rigid registration method. Med. Image Anal., 10(3):366-384.
[12]Pennec, X., Cachier, P., Ayache, N., 1999. Understanding the Demons’ algorithm: 3D non-rigid registration by gradient decent. LNCS, 1679:597-605.
[13]Pluim, J.P.W., Antoine Maintz, J.B., Viergever, M.A., 2004. f-Information measures in medical image registration. IEEE Trans. Med. Imag., 23(12):1508-1516.
[14]Rehman, T., Haber, E., Pryor, G., Melonakos, J., Tannenbaum, A., 2009. 3D nonrigid registration via optimal mass transport on the GPU. Med. Image Anal., 13(6):931-940.
[15]Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J., 2008. Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imag., 22(3):238-247.
[16]Thirion, J.P., 1998. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal., 2(3):243-260.
[17]Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R., 1996. Multi-modal volume registration by maximization of mutual information. Med. Image Anal., 1(1):35-51.
[18]Westin, C.F., 1994. A Tensor Framework for Multidimensional Signal Processing. PhD Thesis, Dissertation No. 348, Linköping Studies in Science and Technology, Sweden.
[19]Yuan, Z.N., Wu, F., Zhuang, Y.T., 2006. Multi-sensor image registration using multi-resolution shape analysis. J. Zhejiang Univ.-Sci. A, 7(4):549-555.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Yuanjun@Fudan University<wyj803@gmail.com>
2010-07-07 14:14:00
In this paper, we developed an accurate, fast image registration algorithm. Welcome peer comments.
Thanks a lot~~