CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-09-28
Cited: 0
Clicked: 7612
Yue Xie, Wei-wei Xu, Yi-zhou Yu, Yan-lin Weng. Sketch-based rotation editing[J]. Journal of Zhejiang University Science C, 2011, 12(11): 867-872.
@article{title="Sketch-based rotation editing",
author="Yue Xie, Wei-wei Xu, Yi-zhou Yu, Yan-lin Weng",
journal="Journal of Zhejiang University Science C",
volume="12",
number="11",
pages="867-872",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000373"
}
%0 Journal Article
%T Sketch-based rotation editing
%A Yue Xie
%A Wei-wei Xu
%A Yi-zhou Yu
%A Yan-lin Weng
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 11
%P 867-872
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000373
TY - JOUR
T1 - Sketch-based rotation editing
A1 - Yue Xie
A1 - Wei-wei Xu
A1 - Yi-zhou Yu
A1 - Yan-lin Weng
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 11
SP - 867
EP - 872
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000373
Abstract: We present a sketch-based rotation editing system for enriching rotational motion in keyframe animations. Given a set of keyframe orientations of a rigid object, the user first edits its angular velocity trajectory by sketching curves, and then the system computes the altered rotational motion by solving a variational curve fitting problem. The solved rotational motion not only satisfies the orientation constraints at the keyframes, but also fits well the user-specified angular velocity trajectory. Our system is simple and easy to use. We demonstrate its usefulness by adding interesting and realistic rotational details to several keyframe animations.
[1]Barr, A.H., Currin, B., Gabriel, S., Hughes, J.F., 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. Comput. Graph., 26(2):313-320.
[2]Bott, J., LaViola, J., 2010. A Pen-Based Tool for Visualizing Vector Mathematics. Eurographics Workshop on Sketch-Based Interfaces and Modeling, p.103-110.
[3]Chen, X., Kang, S., Xu, Y., Dorsey, J., Shum, H.Y., 2008a. Sketching reality: realistic interpretation of architectural designs. ACM Trans. Graph., 27(2):11.
[4]Chen, X., Neubert, B., Xu, Y., Deussen, O., Kang, S., 2008b. Sketch-based tree modeling using Markov random field. ACM Trans. Graph., 27(5):109.
[5]Fu, H., Wei, Y., Tai, C.L., Quan, L., 2007. Sketching Hairstyles. Eurographics Workshop on Sketch-Based Interfaces and Modeling, p.31-36.
[6]Gockenbach, M.S., 2003. Introduction to Sequential Quadratic Programming. Available from http://www.math.mtu.edu/~msgocken [Accessed on Oct. 10, 2010].
[7]Hertzmann, A., Oliver, N., Curless, B., Seitz, S.M., 2002. Curve Analogies. Proc. 13th Eurographics Workshop on Rendering, p.233-246.
[8]Hofer, M., Pottmann, H., 2004. Energy-minimizing splines in manifolds. ACM Trans. Graph., 23(3):284-293.
[9]Igarashi, T., Matsuoka, S., Tanaka, H., 1999. Teddy: a sketching interface for 3D freeform design. Comput. Graph., 33(3):409-416.
[10]Kim, M.J., Kim, M.S., Shin, S.Y., 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. Comput. Graph., 29(3):369-376.
[11]Lin, J., Igarashi, T., Mitani, J., Saul, G., 2010. A Sketching Interface for Sitting-Pose Design. Eurographics Workshop on Sketch-Based Interfaces and Modeling, p.1-8.
[12]Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D., 2005. A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph., 24(3):1142-1147.
[13]Ramamoorthi, R., Barr, A.H., 1997. Fast construction of accurate quaternion splines. Comput. Graph., 31(3):287-292.
[14]Shoemake, K., 1985. Animating rotation with quaternion curves. Comput. Graph., 19(3):245-254.
[15]Thorne, M., Burke, D., van de Panne, M., 2004. Motion doodles: an interface for sketching character motion. ACM Trans. Graph., 23(3):424-431.
Open peer comments: Debate/Discuss/Question/Opinion
<1>