CLC number: TP751.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-09-11
Cited: 1
Clicked: 7191
Yu Zhou, An-wen Shen, Jin-bang Xu. Non-interactive automatic video segmentation of moving targets[J]. Journal of Zhejiang University Science C, 2012, 13(10): 736-749.
@article{title="Non-interactive automatic video segmentation of moving targets",
author="Yu Zhou, An-wen Shen, Jin-bang Xu",
journal="Journal of Zhejiang University Science C",
volume="13",
number="10",
pages="736-749",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200071"
}
%0 Journal Article
%T Non-interactive automatic video segmentation of moving targets
%A Yu Zhou
%A An-wen Shen
%A Jin-bang Xu
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 10
%P 736-749
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200071
TY - JOUR
T1 - Non-interactive automatic video segmentation of moving targets
A1 - Yu Zhou
A1 - An-wen Shen
A1 - Jin-bang Xu
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 10
SP - 736
EP - 749
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200071
Abstract: Extracting moving targets from video accurately is of great significance in the field of intelligent transport. To some extent, it is related to video segmentation or matting. In this paper, we propose a non-interactive automatic segmentation method for extracting moving targets. First, the motion knowledge in video is detected with orthogonal Gaussian-Hermite moments and the Otsu algorithm, and the knowledge is treated as foreground seeds. Second, the background seeds are generated with distance transformation based on foreground seeds. Third, the foreground and background seeds are treated as extra constraints, and then a mask is generated using graph cuts methods or closed-form solutions. Comparison showed that the closed-form solution based on soft segmentation has a better performance and that the extra constraint has a larger impact on the result than other parameters. Experiments demonstrated that the proposed method can effectively extract moving targets from video in real time.
[1]Apostoloff, N., Fitzgibbon, A., 2004. Bayesian Video Matting Using Learnt Image Priors. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.407-414.
[2]Boykov, Y., Kolmogorov, V., 2004. An experimental comparison of min-cut-max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124-1137.
[3]Boykov, Y., Veksler, O., Zabih, R., 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-1239.
[4]Boykov, Y.Y., Jolly, M.P., 2001. Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Object in ND Images. Proc. 8th IEEE Int. Conf. on Computer Vision, p.105-112.
[5]Chuang, Y., 2004. New Models and Methods for Matting and Compositing. PhD Thesis, University of Washington, Washington D.C., USA.
[6]Chuang, Y., Curless, B., Salesin, D.H., Szeliski, R., 2001. A Bayesian Approach to Digital Matting. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.264-271.
[7]Chuang, Y., Agarwala, A., Curless, B., Salesin, D.H., Szeliski, R., 2002. Video matting of complex scenes. ACM Trans. Graph., 21(3):243-248.
[8]Gong, M.L., Wang, L., Yang, R.G., Yang, Y.H., 2010. Real-Time Video Matting Using Multichannel Poisson Equations. Proc. Graphics Interface, p.89-96.
[9]Jiang, M., Crookes, D., Chen, M., 2010. Multi-layer Stereo Video Matting: Video Matting. Proc. Int. Conf. on Multimedia, p.1163-1166.
[10]Lee, S.Y., Yoon, J.C., Lee, I.K., 2010. Temporally coherent video matting. Graph. Models, 72(3):25-33.
[11]Levin, A., Lischinski, D., Weiss, Y., 2004. Colorization using optimization. ACM Trans. Graph., 23(3):689-694.
[12]Levin, A., Lischinski, D., Weiss, Y., 2008. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):228-242.
[13]Li, S.Z., 1995. Markov Random Field Models in Computer Vision. Springer Verlag, New York, USA, p.1-10.
[14]Li, W., Han, G.Q., Gu, Y.C., Zhang, X.Y., Zhang, S.K., 2010. Robust video matting algorithm. J. Appl. Res. Comput., 27(1):358-360, 376.
[15]Li, Y., Sun, J., Tang, C.K., Shum, H.Y., 2004. Lazy snapping. ACM Trans. Graph., 23(3):303-308.
[16]McGuire, M., Matusik, W., Pfister, H., Hughes, J.F., Durand, F., 2005. Defocus video matting. ACM Trans. Graph., 24(3):567-576.
[17]Rother, Y., Kolmogorov, V., Blake, A., 2004. “GrabCut”— interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309-314.
[18]Smith, A.R., Blinn, J.F., 1996. Blue Screen Matting. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.259-268.
[19]Sun, J., Jia, J., Tang, C.K., Shum, H.Y., 2004. Poisson matting. ACM Trans. Graph., 23(3):315-321.
[20]Vincent, L., Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13(6):583-598.
[21]Wang, J., Cohen, M.F., 2005. An Iterative Optimization Approach for Unified Image Segmentation and Matting. 10th IEEE Int. Conf. on Computer Vision, p.936-943.
[22]Wang, J., Cohen, M.F., 2007a. Image and video matting: a survey. Found. Trends Comput. Graph. Vis., 3(2):97-175.
[23]Wang, J., Cohen, M.F., 2007b. Optimized Color Sampling for Robust Matting. IEEE Conf. on Computer Vision and Pattern Recognition, p.1-8.
[24]Wang, L., Gong, M.L., Zhang, C.X., Yang, R.G., Zhang, C., Yang, Y.H., 2012. Automatic real-time video matting using time-of-flight camera and multichannel Poisson equations. Int. J. Comput. Vis., 97(1):104-121.
[25]Wu, Y., Shen, J., 2004. Moving object detection using orthogonal Gaussian Hermite moments. SPIE, 5308:841-849.
Open peer comments: Debate/Discuss/Question/Opinion
<1>